О физических закономерностях реализации неустойчивости заряженных сфероидальных капель

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Асимптотическими методами исследуются условия реализации электростатической неустойчивости осесимметрично осциллирующих сильно заряженных сплюснутых и вытянутых сфероидальных капель в зависимости от величин их эксцентриситетов. Выяснилось, что электростатическая устойчивость сплюснутой сфероидальной капли по отношению к осесимметричным деформациям увеличивается с ростом величины эксцентриситета, а вытянутой сфероидальной капли снижается. Показано, что сама электростатическая неустойчивость сплюснутой заряженной капли реализуется на ее экваторе, где поверхностная плотность заряда достигает максимальной величины, а для вытянутой капли на ее вершинах.

Полный текст

Доступ закрыт

Об авторах

А. И. Григорьев

Институт проблем механики им. А.Ю. Ишлинского РАН

Автор, ответственный за переписку.
Email: grigorai@mail.ru
Россия, Москва

С. О. Ширяева

Ярославский государственный университет им. П.Г. Демидова

Email: shir@uniyar.ac.ru
Россия, Ярославль

Список литературы

  1. Rayleigh (Strutt J.W.) On the equilibrium of liquid conducting masses charged with electricity // Phil. Mag. 1882. V. 14. P. 184–186.
  2. Hendrics C.D., Schneider J.M. Stability of conducting droplet under the influence of surface tension and electrostatic forces // J. Amer. Phys. 1963. V. 1. № 6. P. 450–453.
  3. Григорьев А.И. О механизме неустойчивости заряженной проводящей капли // ЖТФ. 1986. Т. 56. № 7. С. 1272–1278.
  4. Данилов С.Д., Миронов М.А. Сплющивание и дробление капли в звуковом поле // Акустич. ж. 1987. Т. 33. № 2. С. 233–239.
  5. Стерлядкин В.В. Рассеяние света дождевыми каплями // Оптика атмосферы и океана. 2000. Т. 13. № 5. С. 534–537.
  6. Кистович А.В., Чашечкин Ю.Д. Поверхностные колебания свободно падающей капли идеальной жидкости // Изв. РАН. ФАО. 2018. Т. 54. № 2. С. 1–7. https://doi.org/10.1134/S0001433818020123
  7. Сергеев М.Н. К теории дробления заряженной капли в потоке. // Инж. ж.: Наука и инновации. 2018. № 4. С. 1–11. https://doi.org/10.18698/2308-6033-2018-4-1751
  8. Илюшин Я.А., Кутуза Б.Г. Мультиспектральные поляризационные характеристики уходящего микроволнового излучения дождевых осадков // Физич. основы приборостр. 2018. Т. 7. № 1(27). С. 37-48. https://doi.org/10.25210/jfop–1801–037047
  9. Самухина Ю.В., Матюшин Д.Д., Поляков П.А., Буряк А.К. О зарядовой неустойчивости и метастабильном состоянии равновесия заряженной проводящей капли при электрораспылении жидкости // Коллоидный ж. 2021. Т. 83. № 4. С. 449-455. https://doi.org/10.31857/S0023291221040108
  10. Федяева О.А., Пошелюжная Е.Г. Размеры и ориентация мицелл тритона х-10 в водных растворах по данным турбидиметрии // ж. Физич. химии. 2019. Т. 93. № 12. С. 1910–1912. https://doi.org/10.1134/S0044453719120070
  11. Григорьев А.И., Колбнева Н.Ю., Ширяева С.О. Об акустическом и электромагнитном излучениях осциллирующей в материальной среде заряженной капли // Изв. РАН. ФАО. 2023. Т. 59. № 3. С. 352–372. https://doi.org/10.31857/S0002351523030045
  12. Grigor’ev A.I., Kolbneva N.Yu., Shiryaeva S.O. Nonlinear monopole and dipole acoustic radiation of a weakly charged droplet oscillating in a uniform electrostatic field // Fluid Dyn. 2022. V. 57. № 8. P. 982–997. https://doi.org/10.1134/S0015462822080031
  13. Zubarev N.M. Self-similar solutions for conic cusps formation at the surface of dielectric liquids in electric field // Phys. Rev. E. 2002. V. 65. № 055301. P. 1–4. https://doi.org/10.1103/PhysRevE.65.055301
  14. de la Mora J.F. The fluid dynamics of Taylor cones // Ann. Rev. of Fluid Mech. 2007. V. 39. P. 217–243. https://doi.org/10.1146/annurev.fluid.39.050905.110159
  15. Taflin D.C., Ward Т.L., Davis E.J. Electrified droplet fission and the Rayleigh limit // Langmuir. 1989. V. 9. № 2. P. 376–384. https://doi.org/10.1021/la00086a016
  16. Duft D., Achtzehn T., Muller R. et al. Rayleigh jets from levitated microdroplets // Nature. 2003. V. 421. P. 128.
  17. Kuo-Yen Li, Haohua Tu, Asit K. Ray. Charge limits on droplets during evaporation // Langmuir. 2005. V. 21. № 9. P. 3786–3794. https://doi.org/10.1021/la047973n
  18. Fong Chee Sheng, Black N.D., Kiefer P.A., Shaw R.A. An experiment on the Rayleigh instability of charged liquid drops // Am.J. Phys. 2007. V. 75. № 6. P. 499–503. https://doi.org/10.1119/1.2717221
  19. Hunter H.C., Ray Asit K. On progeny droplets emitted during Coulombic fission of charged microdrops // Phys. Chem.&Chem. Phys. 2009. V. 11. № 29. P. 6156–6165. https://doi.org/10.1039/b820457h
  20. Григорьев А.И., Ширяева С.О. Критические условия неустойчивости сплюснутой сфероидальной сильно заряженной капли // ЭОМ. 1992. № 6. С. 20–23.
  21. Френкель Я.И. К теории Тонкса о разрыве поверхности жидкости постоянным электрическим полем в вакууме. // ЖЭТФ. 1936. Т. 6. № 4. С. 348–350.
  22. Ландау Л.Д., Лифшиц Е.М. Теоретическая физика. Т. 6. Гидродинамика. М.: Наука, 1982. 620 с.
  23. Ландау Л.Д., Лифшиц Е.М. Теоретическая физика. Т. 8. Электродинамика сплошных сред. М.: Наука. 1992. 662 с.
  24. Безруков В.И. Научно-технические основы и аппаратное обеспечение автоматизированной электрокаплеструйной маркировки изделий. Дисс. на соискание уч. ст. доктора технич. наук: Санкт-Петербургский гос. политехн. ун-т, Санкт-Петербург: 2003. 505 с.
  25. Фильчаков Л.Ф. Справочник по высшей математике. Киев: Наукова думка, 1973. 744 с.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. График зависимости безразмерной поверхностной плотности собственного электрического заряда  на сфероидальной капле несжимаемой электропроводной жидкости от величины ее эксцентриситета e и ее полярного угла : а  сплюснутая капля; б  вытянутая капля.

Скачать (475KB)

© Российская академия наук, 2024