On the physical regularities of the instability of charged spheroidal droplets
- Autores: Grigoriev A.I.1, Shiryaeva S.O.2
- 
							Afiliações: 
							- Ishlinsky Institute for Problems in Mechanics of the RAS
- Yaroslavl State University named after P.G. Demidov
 
- Edição: Volume 88, Nº 4 (2024)
- Páginas: 583-593
- Seção: Articles
- URL: https://cardiosomatics.ru/0032-8235/article/view/675043
- DOI: https://doi.org/10.31857/S0032823524040069
- EDN: https://elibrary.ru/WVXUUY
- ID: 675043
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Asymptotic methods study the conditions for the implementation of electrostatic instability of oscillating highly charged flattened and elongated spheroidal droplets depending on the values of their eccentricities. It turned out that the electrostatic stability of the flattened spheroidal droplet with respect to axisymmetric deformations increases with an increase in eccentricity, and the elongated spheroidal droplet decreases. It is shown that the electrostatic instability of the flattened charged droplet itself is realized at its equator, where the surface density of the charge reaches the maximum value, and for the elongated droplet at its vertices.
Palavras-chave
Texto integral
 
												
	                        Sobre autores
A. Grigoriev
Ishlinsky Institute for Problems in Mechanics of the RAS
							Autor responsável pela correspondência
							Email: grigorai@mail.ru
				                					                																			                												                	Rússia, 							Moscow						
S. Shiryaeva
Yaroslavl State University named after P.G. Demidov
														Email: shir@uniyar.ac.ru
				                					                																			                												                	Rússia, 							Yaroslavl						
Bibliografia
- Rayleigh (Strutt J.W.) On the equilibrium of liquid conducting masses charged with electricity // Phil. Mag., 1882, vol. 14, pp. 184–186.
- Hendrics C.D., Schneider J.M. Stability of conducting droplet under the influence of surface tension and electrostatic forces // J. Amer. Phys., 1963, vol. 1, no. 6, pp. 450–453.
- Grigoriev A.I. On the mechanism of instability of a charged conductive drop // J. of Tech. Phys., 1986, vol. 56, no. 7, pp. 1272–1278.
- Danilov S.D., Mironov M.A. Flattening and crushing of the drop in the sound field // Acoustic J., 1987, vol. 33, no. 2, pp. 233–239.
- Sterlyadkin V.V. Light scattering by raindrops // Optics of the Atmos.&Ocean, 2000, vol. 13, no. 5, pp. 534–537.
- Kistovich A.V., Chashechkin Yu.D. Surface fluctuations of the free-falling drop of the ideal liquid // Izv. RAS. FAO, 2018, vol. 54, no. 2, ss. 1–7.
- Sergeev M.N. To the theory of crushing a charged drop in a stream // Engng. J.: Sci.&Innov., 2018, no. 4, ss. 1–11.
- Ilyushin Ya.A., Kutuza B.G. Multispectral polarization characteristics of outgoing microwave radiation of rainfall//Physical Foundations of Instrumentation, 2018, Т. 7, no. 1(27), pp. 37–48.
- Samukhina Yu.V., Matyushin D.D., Polyakov P.A., Buryak A.K. On charge instability and metastable equilibrium state of a charged conductive drop during liquid electrospray // Colloid J., 2021, vol. 83, no. 4, pp. 449–455.
- Fedyaeva O.A., Poshelyuzhnaya E.G. Dimensions and orientation of triton micelles x-10 in aqueous solutions according to turbidimetry data // J. of Phys. Chem., 2019, vol. 93, no. 12, pp. 1910–1912.
- Grigoriev A.I., Kolbneva N.Yu., Shiryaeva S.O. On acoustic and electromagnetic radiation oscillating in the material medium of a charged drop // Izv. RAS. FAO, 2023, vol. 59, no. 3, ss. 352–372. https://doi.org/10.31857/S0002351523030045
- Grigor’ev A.I., Kolbneva N.Yu., Shiryaeva S.O. Nonlinear monopole and dipole acoustic radiation of a weakly charged droplet oscillating in a uniform electrostatic field // Fluid Dyn., 2022, vol. 57, no. 8, pp. 982–997. https://doi.org/10.1134/S0015462822080031
- Zubarev N.M. Self-similar solutions for conic cusps formation at the surface of dielectric liquids in electric field // Phys. Rev. E, 2002, vol. 65, no. 055301, pp. 1–4. https://doi.org/10.1103/PhysRevE.65.055301
- de la Mora J.F. The fluid dynamics of Taylor cones // Ann. Rev. of Fluid Mech., 2007, vol. 39, pp. 217–243, https://doi.org/10.1146/annurev.fluid.39.050905.110159
- Taflin D.C., Ward Т.L., Davis E.J. Electrified droplet fission and the Rayleigh limit // Langmuir, 1989, vol. 9, no. 2, pp. 376–384. https://doi.org/10.1021/la00086a016
- Duft D., Achtzehn T., Muller R. et al. Rayleigh jets from levitated microdroplets // Nature, 2003, vol. 421, pp. 128.
- Kuo-Yen Li, Haohua Tu, Ray A.K. Charge limits on droplets during evaporation // Langmuir, 2005, vol. 21, no. 9, pp. 3786–3794. https://doi.org/10.1021/la047973n
- Fong Chee Sheng, Black N.D., Kiefer P.A., Shaw R.A. An experiment on the Rayleigh instability of charged liquid drops // Am.J. Phys., 2007, vol. 75, no. 6, pp. 499–503. https://doi.org/10.1119/1.2717221
- Hunter H.C., Ray Asit K. On progeny droplets emitted during Coulombic fission of charged microdrops // Phys. Chem.&Chem. Phys., 2009, vol. 11, no. 29, pp. 6156–6165. https://doi.org/10.1039/b820457h
- Grigoriev A.I., Shiryaeva S.O. Critical conditions of instability of flattened spheroidal highly charged drop // EOM, 1992, no. 6, pp. 20–23.
- Frenkel J.I. To the Tonks theory of liquid surface rupture by a constant electric field in vacuum // PETF, 1936, vol. 6, no. 4, pp. 348–350.
- Landau L.D., Lifshits E.M. Hydrodynamics. Moscow: Nauka, 1982. 620 p.
- Landau L.D., Lifschitz E.M. Theoretical Physics. Vol. 8. Electrodynamics of Continuous Media. Moscow: Nauka, 1992. 662 p.
- Bezrukov V.I. Scientific and Technical Foundations and Hardware of Automated Electrocaplestjet Marking of Products / Diss. for the degree of Doctor of Tech. Sci. St. Petersburg State Polytechnic Univ., St. Petersburg: 2003. 505 p.
- Filchakov L.F. Handbook of Higher Mathematics. Kiev: Naukova Dumka, 1973. 744 p.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 

