Двоякопериодические контактные задачи для слоя с неизвестной зоной контакта

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Рассматриваются двоякопериодические контактные задачи для упругого слоя с неизвестной областью контакта. Одна грань слоя находится в условиях скользящей или жесткой заделки. Задачи сводятся к интегральным уравнениям, ядра которых не содержат квадратур. Для случая полного контакта другой грани слоя с двумерной синусоидальной жесткой поверхностью задачи имеют точное решение, которое используется для отладки программ, реализующих численный метод нелинейных интегральных уравнений Галанова, позволяющий одновременно определить область контакта и контактные давления. Рассчитаны механические характеристики при внедрении системы эллиптических параболоидов, изучен переход от дискретной к непрерывной области контакта.

Об авторах

Н. Б. Золотов

Донской государственный технический университет

Email: pozharda@rambler.ru
Россия, Ростов-на-Дону

Д. А. Пожарский

Донской государственный технический университет

Автор, ответственный за переписку.
Email: pozharda@rambler.ru
Россия, Ростов-на-Дону

Список литературы

  1. Westergaard H.M. Bearing pressure and cracks // ASME. J. Appl. Mech. E. 1939. V. 6. № 1. P. 43–53.
  2. Пожарский Д.А. Периодические контактные и смешанные задачи теории упругости (обзор) // Изв. вузов. Сев.-Кавк. регион. Естеств. науки. 2021. № 2. С. 22–33.
  3. Горячева И.Г. Периодическая контактная задача для упругого полупространства // ПММ. 1998. Т. 62. Вып. 6. С. 1036–1044.
  4. Goryacheva I.G. Contact Mechanics in Tribology. Berlin: Springer, 1998. 360 p.
  5. Johnson K.L., Greenwood J.A., Higginson J.G. The contact of elastic regular wavy surfaces // Int. J. Mech. Sci. 1985. V. 27. № 6. P. 383–396.
  6. Джонсон К. Механика контактного взаимодействия. М.: Мир, 1989. 510 с.
  7. Yastrebov V.A., Anciaux G., Molinari J.-F. The contact of elastic regular wavy surfaces revisited // Tribol. Lett. 2014. V. 56. P. 171–183.
  8. Александров В.М. Двоякопериодические контактные задачи для упругого слоя // ПММ. 2002. Т. 66. Вып. 2. С. 307–315.
  9. Солдатенков И.А. Периодическая контактная задача теории упругости. Учет трения, износа и сцепления // ПММ. 2013. Т. 77. Вып. 2. С. 337–351.
  10. Goryacheva I.G., Torskaya E.V. Modeling of fatigue wear of a two-layered elastic half-space in contact with periodic system of indenters // Wear. 2010. V. 268. № 11–12. P. 1417–1422.
  11. Jin F., Wan Q., Guo X. A double-Westergaard model for adhesive contact of a wavy surface // Int. J. Solids Struct. 2016. V. 102–103. P. 66–76.
  12. Goryacheva I.G., Makhovskaya Y. Combined effect of surface microgeometry and adhesion in normal and sliding contacts of elastic bodies // Friction. 2017. V. 5. № 3. P. 339–350.
  13. Солдатенков И.А. Пространственная контактная задача для упругого слоя и волнистого штампа при наличии трения и износа // ПММ. 2014. Т. 78. Вып. 1. С. 145–155.
  14. Goryacheva I., Yakovenko A. The periodic contact problem for spherical indenters and viscoelastic half-space // Tribol. Int. 2021. V. 161. P. 107078.
  15. Золотов Н.Б., Пожарский Д.А. Периодические контактные задачи для полупространства с частично закрепленной границей // ПММ. 2022. Т. 86. № 3. С. 394–403.
  16. Галанов Б.А. Метод граничных уравнений типа Гаммерштейна для контактных задач теории упругости в случае неизвестных областей контакта // ПММ. 1985. Т. 49. Вып. 5. С. 827–835.
  17. Яковенко А.А. Моделирование дискретного контакта упругих и вязкоупругих тел. Дисс. на соиск. уч. степ. канд. физ.-мат. н. М.: Институт проблем механики им. А.Ю. Ишлинского РАН, 2022. 127 с.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2.

Скачать (33KB)
3.

Скачать (24KB)

© Н.Б. Золотов, Д.А. Пожарский, 2023