Effect of ionic liquid on the extraction of lanthanides(III) from nitric acid solutions with phosphoryl-containing podands
- Autores: Turanov A.N.1, Karandashev V.K.2, Baulin V.E.3, Baulin D.V.4
- 
							Afiliações: 
							- Ossipyan Institute of Solid State Physics, Russian Academy of Sciences
- Institute of Microelectronics Technology and High Pure Materials, Russian Academy of Sciences
- Institute of Physiologically Active Substances of the Russian Academy of Sciences
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
 
- Edição: Volume 66, Nº 4 (2024)
- Páginas: 322-327
- Seção: Articles
- URL: https://cardiosomatics.ru/0033-8311/article/view/686221
- DOI: https://doi.org/10.31857/S0033831124040031
- ID: 686221
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
The effect of the ionic liquid, 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, on the extraction of lanthanides(III) from nitric acid solutions with phosphoryl-containing podands (2-(2-diphenylphosphoryl)-4-ethylphenoxy)methyl)diphenylphosphine oxide (1), (2-(2-diphenylphosphoryl)-4-ethylphenoxy)ethyl)diphenylphosphine oxide (2), and 2-[2-(diphenylphosphoryl)-4-ethylphenoxy]-N, N-dioctylacetamide (3) was studied. The stoichiometry of the extracted complexes was determined. The efficiency of extraction of lanthanides(III) with solutions of compounds 1–3 in dichloroethane from nitric acid solutions increases in the order 3 < 2 < 1. It has been established that, when replacing dichloroethane with an ionic liquid as a diluent, the extraction efficiency increases. The magnitude of this effect decreases in the series of compounds 3 > 2 > 1. In the case of compound 1, the replacement of dichloroethane with an ionic liquid as a solvent is accompanied by a decrease in the extraction of lanthanides(III) at [HNO3] > 1.5 M.
Palavras-chave
Texto integral
 
												
	                        Sobre autores
A. Turanov
Ossipyan Institute of Solid State Physics, Russian Academy of Sciences
														Email: mager1988@gmail.com
				                					                																			                												                	Rússia, 							Chernogolovka, Moscow oblast, 142432						
V. Karandashev
Institute of Microelectronics Technology and High Pure Materials, Russian Academy of Sciences
														Email: mager1988@gmail.com
				                					                																			                												                	Rússia, 							Chernogolovka, Moscow oblast, 142432						
V. Baulin
Institute of Physiologically Active Substances of the Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: mager1988@gmail.com
				                					                																			                												                	Rússia, 							Chernogolovka, Moscow oblast, 142432						
D. Baulin
Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
														Email: mager1988@gmail.com
				                					                																			                												                	Rússia, 							119991, Moscow, 119991						
Bibliografia
- Myasoedov B.F., Kalmykov S.N., Kulyako Yu.M., Vinokurov S.E. // Geochem. Int. 2016. Vol. 54. N 13. P. 1156. https://doi.org/10.1134/S0016702916130115
- Аляпышев М. Ю., Бабаин В. А., Устынюк Ю. А. // Успехи химии. 2016. Т. 85. N 9. С. 943; Alyapyshev M.Yu., Babain V.A., Ustynyuk Yu.A. // Russ. Chem. Rev. 2016. Vol. 85. N 9. P. 943. https://doi.org/10.1070/RCR4588
- Leoncini A., Huskens J., Verboom W. // Chem. Soc. Rev. 2017. Vol. 46. P. 7229. doi: 10.1039/C7CS00574A
- Wilson A. M., Bailey P. J., Tasker P. A. // Chem. Soc. Rev. 2014. Vol. 43. P. 123.
- Werner E. J., Biros S. M. // Org. Chem. Front. 2019. Vol. 6. P. 2067.
- Bhattacharyya A., Mohapatra P.K. // Radiochim. Acta. 2019. V. 107. P. 931.
- Розен А. М., Крупнов Б. В. // Успехи химии. 1996. Т. 65. N 11. С. 1052–1079; Rozen A.M., Krupnov B.V. // Russ. Chem. Rev. 1996. Vol. 65. N 11. P. 973. http://dx.doi.org/10.1070/RC1996v065n11ABEH000241
- Horwitz E.P., Martin K.A., Diamond H., Kaplan L. // Solvent Extr. Ion Exch. 1986. Vol. 4. N 3. P. 449. https://doi.org/10.1080/07366298608917877
- Чмутова М.К., Литвина М.Н., Прибылова Г.А. Иванова Л.А., Смирнов И.В., Шадрин А.Ю., Мясоедов Б.Ф. // Радиохимия. 1999. Т. 41. № 4. С. 331. Chmutova M.K., Litvina M.N., Pribylova G.A., Ivanova L A., Smirnov I.V., Shadrin A.Yu, Myasoedov B.F. // Radiochemistry. 1999. Vol. 41. № 4. P. 349.
- Turanov A.N., Karandashev V.K., Baulin V.E., Yarkevich A.N., Safronova Z.V. // Solvent Extr. Ion Exch. 2009. Vol. 27. P. 551. https://doi.org/10.1080/07366290903044683
- Демин С.В., Жилов В.И., Нефедов С.Е. Баулин В.Е., Цивадзе А.Ю. // ЖНХ. 2012. Т. 57. № 6. С. 970; Demin S.V., Nefedov S.E., Zhilov V.I. Baulin V. E., Tsivadze A. Y. // Russ. J. Inorg. Chem. 2012. Vol. 57. N 6. P. 897. https://doi.org/10.1134/S0036023612060095
- Туранов А.Н., Карандашев В.К., Баулин Д.В., Баулин В.Е. // ЖОХ. 2020. Т. 90. № 6. С. 919.
- Kolarik Z. // Solvent Extr. Ion Exch. 2013. Vol. 31. P. 24. https://doi.org/10.1080/07366299.2012.700589
- Riano S., Foltova S.S., Binnemans K. // RSC Adv. 2020. Vol. 10. P. 307. https://doi.org/10.1039/c9ra08996
- Iqbal M., Waheed K., Rahat S.B., Mehmood T., Lee M.S. // J. Radioanal. Nucl. Chem. 2020. Vol. 325. P. 1. https://doi.org/10.1007/s10967-020-07199-1
- Atanassova M. // J. Mol. Liq. 2021. Vol. 343. ID 117530. https://doi.org/10.1016/j.molliq.2021.117530
- Белова В.В. // Радиохимия. 2021. Т. 63. № 1. С. 3; Belova V.V. // Radiochemistry. 2021. V. 63. № 1. Р. 1. https://doi.org/10.1134/S106636222101001X
- Sun T., Zhang Y., Wu Q., Chen J., Xia L., Xu C. // Solvent Extr. Ion Exch. 2017. Vol. 35. P. 408. https://doi.org/10.1080/07366299.2017.1379142
- Туранов А.Н., Карандашев В.К., Яркевич А.Н. // Радиохимия. 2022. Т. 64. № 2. С. 164; Turanov A.N., Karandashev V.K., Yarkevich A.N. // Radiochemistry. 2022. Vol. 64. № 2. P. 163. https://doi.org/10.1134/S1066362222020072
- Turanov A.N., Karandashev V.K., Sharova E.V., Artyushin O.I., Kostikova G.V., Fedoseev A.M. // Radiochim. Acta. 2023. Vol. 111. P. 601.
- Pribilova G., Smirnov I., Novikov A. // J. Radioanal. Nucl. Chem. 2012. Vol. 295. P. 83.
- Туранов А.Н., Карандашев В.К., Баулин В.Е., Калашникова И.П., Кириллов Е.В., Кириллов С.В., Рычков В.Н., Цивадзе А.Ю. // ЖНХ. 2016. Т. 61. № 3. С. 396.
- Bonhote P., Dias A.P., Papageorgiou N., Kalyanasundaram K., Grätzel M. // Inorg. Chem. 1996. Vol. 35. P. 1168. https://doi.org/10.1021/ic951325x
- Nash K.L., Jensen M.P. // Sep. Sci. Technol. 2001. Vol. 36. N 5–6. P. 1257. https://doi.org/10.1081/SS-100103649
- Binnemans K. // Chem. Rev. 2007. Vol. 107. P. 2592.
- Gaillard C., Boltoeva M., Billard I., Georg S., Mazan V., Ouadi A., Ternova D., Henning C. // ChemPhysChem. 2015. Vol. 16. P. 2653. https://doi.org/ 10.1002/cphc.201500283
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 






