Cesium-137 extraction from nitric acid media with calix[4]arene-crown-6 ether solutions in bis(tetrafluoropropyl) carbonate
- Autores: Aleksandrov T.S.1,2, Babitova E.S.1,2, Blokhin A.N.3, Brechalov A.А.1,2, Eremin V.V.2, Ermolenko Y.E.2, Karavan M.D.1,2, Kenf E.V.1, Maltseva T.V.1, Ostras' A.S.2, Timoshenko V.V.2, Tkachenko L.I.1, Smirnov I.V.1,2
- 
							Afiliações: 
							- Khlopin Radium Institute
- St. Petersburg State University
- Institute of Macromolecular Compounds, Russian Academy of Sciences
 
- Edição: Volume 67, Nº 2 (2025)
- Páginas: 119-134
- Seção: Articles
- URL: https://cardiosomatics.ru/0033-8311/article/view/689559
- DOI: https://doi.org/10.31857/S0033831125020038
- ID: 689559
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
The physicochemical and extraction properties of calixarene crown ethers: 1,3-alt-bis(octyloxy)calix[4]arene-crown-6 (II) and its derivatives with o-phenylene (I), methylenepropoxy (IV) and methylene(2,2,3,3-tetrafluoropropoxy) (III) substituents in the crown ether ring, were studied. Solutions of compound II in bis(2,2,3,3-tetrafluoropropyl) carbonate (BK-1) effectively extract cesium from 3 mol/L nitric acid already at a concentration of 0.001 mol/L. The introduction of substituents into the crown ether ring significantly reduces the efficiency of cesium extraction, but increases the solubility of calixarene crown ethers in bis(2,2,3,3-tetrafluoropropyl) carbonate. The data on the solubility of calixarene crown ethers in water and 3 mol/L nitric acid, the distribution between the organic and aqueous phases, and the rate of interaction with nitric acid were obtained. Calixarene crown ether I with an o-phenylene substituent reacts with 3 mol/L nitric acid approximately 2 times faster than dibenzo-21-crown-7. The other calixarene crown ethers studied do not react with nitric acid under the similar conditions. Quantum chemical modeling, including optimization of the structure geometry and calculation of vibrational frequencies, was performed for the molecules of calixarene crown ethers, DB21C7 and their complexes with the cesium cation. The calculated ΔG0 values for the complexation of ligands with the cesium cation correlate well with the experimental lgDCs (except for compound III with a fluorinated substituent). Solutions of calixarene crown ethers in bis(2,2,3,3-tetrafluoropropyl) carbonate exhibit selectivity for cesium and do not extract 152Eu and 241Am from nitric acid media.
Texto integral
 
												
	                        Sobre autores
T. Aleksandrov
Khlopin Radium Institute; St. Petersburg State University
														Email: mkaravan@khlopin.ru
				                					                																			                												                	Rússia, 							2-i Murinskii pr. 28, St. Petersburg, 194021; Universitetskaya nab. 7–9, St. Petersburg, 199034						
E. Babitova
Khlopin Radium Institute; St. Petersburg State University
														Email: mkaravan@khlopin.ru
				                					                																			                												                	Rússia, 							2-i Murinskii pr. 28, St. Petersburg, 194021; Universitetskaya nab. 7–9, St. Petersburg, 199034						
A. Blokhin
Institute of Macromolecular Compounds, Russian Academy of Sciences
														Email: mkaravan@khlopin.ru
				                					                																			                												                	Rússia, 							Bolshoi pr. V.O. 31, St. Petersburg, 199004						
A. Brechalov
Khlopin Radium Institute; St. Petersburg State University
														Email: mkaravan@khlopin.ru
				                					                																			                												                	Rússia, 							2-i Murinskii pr. 28, St. Petersburg, 194021; Universitetskaya nab. 7–9, St. Petersburg, 199034						
V. Eremin
St. Petersburg State University
														Email: mkaravan@khlopin.ru
				                					                																			                												                	Rússia, 							Universitetskaya nab. 7–9, St. Petersburg, 199034						
Yu. Ermolenko
St. Petersburg State University
														Email: mkaravan@khlopin.ru
				                					                																			                												                	Rússia, 							Universitetskaya nab. 7–9, St. Petersburg, 199034						
M. Karavan
Khlopin Radium Institute; St. Petersburg State University
							Autor responsável pela correspondência
							Email: mkaravan@khlopin.ru
				                					                																			                												                	Rússia, 							2-i Murinskii pr. 28, St. Petersburg, 194021; Universitetskaya nab. 7–9, St. Petersburg, 199034						
E. Kenf
Khlopin Radium Institute
														Email: mkaravan@khlopin.ru
				                					                																			                												                	Rússia, 							2-i Murinskii pr. 28, St. Petersburg, 194021						
T. Maltseva
Khlopin Radium Institute
														Email: mkaravan@khlopin.ru
				                					                																			                												                	Rússia, 							2-i Murinskii pr. 28, St. Petersburg, 194021						
A. Ostras'
St. Petersburg State University
														Email: mkaravan@khlopin.ru
				                					                																			                												                	Rússia, 							Universitetskaya nab. 7–9, St. Petersburg, 199034						
V. Timoshenko
St. Petersburg State University
														Email: mkaravan@khlopin.ru
				                					                																			                												                	Rússia, 							Universitetskaya nab. 7–9, St. Petersburg, 199034						
L. Tkachenko
Khlopin Radium Institute
														Email: mkaravan@khlopin.ru
				                					                																			                												                	Rússia, 							2-i Murinskii pr. 28, St. Petersburg, 194021						
I. Smirnov
Khlopin Radium Institute; St. Petersburg State University
														Email: mkaravan@khlopin.ru
				                					                																			                												                	Rússia, 							2-i Murinskii pr. 28, St. Petersburg, 194021; Universitetskaya nab. 7–9, St. Petersburg, 199034						
Bibliografia
- Стратегия развития ядерной энергетики России. М.: Росатом, 2023. 64 с.
- Логунов М.В., Ворошилов Ю.А., Бабаин В.А., Скобцов А.С. // Радиохимия. 2020. Т. 62. № 6. С. 463.
- Grüner B., Rais J., Seluckỳ P., Lučaníková M. // Boron Science: New Technologies and Applications / Ed. N.S. Hosmane. CRC, 2016. P. 463.
- Ворошилов Ю.А., Логунов М.В., Смольянихин К.В., Яковлев Н.Г. // Вопр. радиац. безопасности. 2013. № 2. P. 23.
- Кощеева А.М., Родин А.В., Ананьев А.В. // Радиохимия. 2023. Т. 65. № 4. С. 303–309.
- Smirnov I.V., Karavan M.D., Kenf E.V., Tkachenko L.I., Timoshenko V.V., Brechalov A.A. et al. // Solvent Extr. Ion Exch. 2022. Vol. 40. N 7. P. 756.
- Mátel Ľ., Bilbao T. // J. Radioanal. Nucl. Chem. 1989. Vol. 137. N 3. P. 183.
- Ripon R.I., Begum Z.A., Rahman I.M.M. // Microchem. J. 2024. Vol. 199. Article 110161.
- Ungaro R., Casnati A., Ugozzoli F., Pochini A., Dozol J.-F., Hill C., Rouquette H. // Angew. Chem. Int. Ed. Engl. 1994. Vol. 33. P. 1506.
- Roach B.D., Neil W.J., Duncan N.C., Laetitia H. // Solvent Extr. Ion Exch. 2014. Vol. 33. N 2. P. 134.
- Simonnet M., Miyazaki Y., Suzuki S., Yaita V. // Solvent Extr. Ion Exch. 2019. Vol. 37. P. 81.
- Wang J., Zhuang S. // Nucl. Eng. Technol. 2020. Vol. 52. N 2. P. 328.
- Kumar V., Sharma J.N., Achuthan P.V., Hubli R.C. // J. Radioanal. Nucl. Chem. 2014. Vol. 299. P. 1547.
- Khan P.N., Pahan S., Sengupta A., Tessy V., Singhadeb A.K., Ali S.M. // J. Mol. Liq. 2024. Vol. 397. Article 124064.
- Jagasia P., Mohapatra P.K., Dhami P.S., Patil A.B., Adya V.C., Sengupta A. et al. // J. Radioanal. Nucl. Chem. 2014. Vol. 302. N 2. P. 1087.
- Wang J., Chen J., Shan J. // Solvent Extr. Ion Exch. 2015. Vol. 33. P. 249.
- Zhang A., Hu Q. // Sep. Sci. Technol. 2017. Vol. 52. N 10. P. 1670.
- Patra K., Sengupta A., Mishra R.K., Mittal V.K., Valsala T.P., Kaushik C.P. // J. Radioanal. Nucl. Chem. 2022. Vol. 331. N 3. P. 1473.
- Babain V., Alyapyshev M., Еkberg С., Todd T. // Solvent Extr. Ion Exch. 2023. Vol. 41. N 3. P. 253.
- Percec V., Bera T.K., De B.B., Sanai Y., Smith J., Holerca M.N., Barboiu B. // J. Org. Chem. 2001. Vol. 66. P. 2104.
- Adamo C., Barone V. // J. Chem. Phys. 1999. Vol. 110. N 13. P. 6158.
- Weigend F., Ahlrichs R. // Phys. Chem. Chem. Phys. 2005. Vol. 7. P. 3297.
- Leininger T., Nicklass A., Kuechle W., Stoll H., Dolg M., Bergner A. // Chem. Phys. Lett. 1996. Vol. 255. P. 274.
- Caldeweyher E., Bannwarth C., Grimme S. // J. Chem. Phys. 2017. Vol. 147. Article 034112.
- Barone V., Cossi M. // J. Phys. Chem. A. 1998. Vol. 102. N 11. P. 1995.
- Chemcraft–graphical software for visualization of quantum chemistry computations. Version 1.8, build 682. https://www.chemcraftprog.com
- Smirnov I.V., Stepanova E.S., Tyupina M.Y., Ivenskaya N.M., Zaripov S.R., Kleshnina S.R. et al. // Macroheterocycles. 2017. Vol. 10. N 2. P. 196.
- Sharma J.N., Kumar A., Kumar V., Pahan S., Janardanan C., Tessi V., Wattal P.K. // Sep. Purif. Technol. 2014. Vol. 135. P. 176.
- Jagasia P., Ansari S.A., Raut D.R., Dhami P.S., Gandhi P.M., Kumar A., Mohapatra P.K. // Sep. Purif. Technol. 2016. Vol. 170. P. 208.
- Raut D.R., Mohapatra P.K., Choudhary M.K., Nayak S.K. // J. Membr. Sci. 2013. Vol. 429. P. 197.
- Patra K., Sadhu B., Sengupta A., Patil C.B., Mishra R.K., Kaushik C.P. // RSC Adv. 2021. Vol. 11. P. 21323.
- Jagasia P., Mohapatra P.K., Dhami P.S., Gandhi P.M., Wattal P.K. // Sep. Sci. Technol. 2014. Vol. 49. P. 2151.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 












