Метод корректировки коэффициентов линейного предсказания для систем цифровой обработки речи со сжатием данных на основе авторегрессионной модели голосового сигнала
- Авторы: Савченко В.В.1, Савченко Л.В.2
- 
							Учреждения: 
							- Редакция журнала “Радиотехника и электроника”
- Национальный исследовательский университет “Высшая школа экономики”
 
- Выпуск: Том 69, № 4 (2024)
- Страницы: 339-347
- Раздел: ТЕОРИЯ И МЕТОДЫ ОБРАБОТКИ СИГНАЛОВ
- URL: https://cardiosomatics.ru/0033-8494/article/view/650688
- DOI: https://doi.org/10.31857/S0033849424040056
- EDN: https://elibrary.ru/JSCORK
- ID: 650688
Цитировать
Полный текст
 Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Доступ платный или только для подписчиков
		                                							Доступ платный или только для подписчиков
		                                					Аннотация
Рассмотрена проблема искажений авторегрессионной модели голосового сигнала под действием аддитивного фонового шума в системах цифровой обработки речи со сжатием данных на основе линейного предсказания. В частотной области указанные искажения проявляются в ослаблении основных формант, отвечающих за разборчивость речи диктора. Для компенсации формантного ослабления предложено корректировать основные параметры авторегрессионной модели — коэффициенты линейного предсказания. Разработан регулярный метод их корректировки с использованием импульсной характеристики рекурсивного формирующего фильтра. При применении данного метода наряду с амплитудным усилением формант их частόты сохраняются неизменными как фактор узнаваемости голоса диктора. Эффективность метода исследована экспериментально с использованием авторского программного обеспечения. По результатам проведенного эксперимента сделаны выводы о существенном повышении относительного уровня формант в спектре мощности откорректированного голосового сигнала.
Полный текст
 
												
	                        Об авторах
В. В. Савченко
Редакция журнала “Радиотехника и электроника”
							Автор, ответственный за переписку.
							Email: vvsavchenko@yandex.ru
				                					                																			                												                	Россия, 							ул. Моховая, 11, корп. 7, Москва, 125009						
Л. В. Савченко
Национальный исследовательский университет “Высшая школа экономики”
														Email: vvsavchenko@yandex.ru
				                					                																			                												                	Россия, 							ул. Б. Печерская, 25, Нижний Новгород, 603155						
Список литературы
- Rabiner L.R., Schafer R.W. // Foundations and Trends in Signal Processing. 2007. V. 1. № 1–2. P. 1. https://doi.org/10.1561/2000000001
- O’Shaughnessy D. // J. Audio. Speech. Music Processing. 2023. V. 8. https://doi.org/10.1186/s13636-023-00274-x
- Savchenko V.V. // Radioelectron. Commun. Systems. 2021. V. 64. № 11. P. 592. https://doi.org/10.3103/S0735272721110030
- Gibson J. // Information. 2019. V. 10. № 5. 179. https://doi.org/10.3390/info10050179
- Chaouch H., Merazka F., Marthon Ph. // Speech Commun. 2019. V. 108. P. 33. https://doi.org/10.1016/j.specom.2019.02.002.
- Савченко В.В., Савченко Л.В. // Измерит. техника. 2019. № 9. С. 59. https://doi.org/10.32446/0368-1025it.2019-9-59-64
- Candan Ç. // Signal Processing. 2020. V. 166. № 10. Р. 107256. https://doi.org/10.1016/j.sigpro.2019.107256
- Semenov V.Yu. // J. Automation and Inform. Sci. 2019. V. 51. № 2. P. 30. https://doi.org/10.1615/JAutomatInfScien.v51.i2.40
- Marple S.L. Digital Spectral Analysis with Applications. 2-nd ed. Mineola: Dover Publ., 2019.
- Burg J.P. Maximum entropy spectral analysis. PhD Thesis. Stanford Univ., 1975.
- Magi C., Pohjalainen J., Bäckström T., Alku P. // Speech Commun. 2009. V. 51. № 5. P. 401. https://doi.org/10.1016/j.specom.2008.12.005
- Rout J.K., Pradhan G. // Speech Commun. 2022. V. 144. P. 101. https://doi.org/10.1016/j.specom.2022.09.004
- Deng F., Bao Ch. // Speech Commun. 2016. V. 79. P. 30. https://doi.org/10.1016/j.specom.2016.02.006
- Савченко В.В., Савченко А. В. // Измерит. техника. 2020. № 11. С. 65. https://doi.org/10.32446/0368-1025it.2020-11-65-72
- Савченко В.В. // РЭ. 2023. Т. 68. № 2. С. 138. https://doi.org/10.31857/S0033849423020122
- Kathiresan Th., Maurer D., Suter H., Dellwo V. // J. Acoust. Soc. Amer. 2018. V. 143. № 3. P. 1919. https://doi.org/10.1121/1.5036258
- Ngo Th., Kubo R., Akagi M. // Speech Commun. 2021. V. 135. P. 11. https://doi.org/10.1016/j.specom.2021.09.004
- Palaparthi A., Titze I. R. // Speech Commun. 2020. V. 123. P. 98. https://doi.org/10.1016/j.specom.2020.07.003
- Sadasivan J., Seelamantula Ch.S., Muraka N.R. // Speech Commun. 2020. V. 116. P. 12. https://doi.org/10.1016/j.specom.2019.11.001
- Gustafsson Ph.U., Laukka P., Lindholm T. // Speech Commun. 2023. V. 146. P. 82. https://doi.org/10.1016/j.specom.2022.12.001
- Ito M., Ohara K., Ito A., Yano M. // Proc. Interspeech. 2010. V. 2490. https://doi.org/10.21437/Interspeech.2010-669
- Arun-Sankar M.S., Sathidevi P. S. // Heliyon. 2019. V. 5. № 5. Р. e01820. https://doi.org/10.1016/j.heliyon.2019.e01820
- Narendra N.P., Alku P. // Speech Commun. 2019. V. 110. P. 47. https://doi.org/10.1016/j.specom.2019.04.003
- Alku P., Kadiri S.R., Gowda D. // Computer Speech & Language. 2023. V. 81. № 10. Р. 101515. https://doi.org/10.1016/j.csl.2023.101515
- Sadok S., Leglaive S., Girin L. et al. // Speech Commun. 2023. V. 148. P. 53. https://doi.org/10.1016/j.specom.2023.02.005
- Nguyen D.D., Chacon A., Payten Ch.L. et al. // Int. J. Language & Commun. Disorders. 2022. V. 57. № 2. P. 366. https://doi.org/10.1111/1460-6984.12705
Дополнительные файлы
 
				
			 
						 
						 
						 
					 
						 
									

 
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail 









