(111)A-, (411)A-oriented substrates efficiency for low-temperature epitaxial growth of (In,Ga)As photoconductive structures used in terahertz pulses generation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

In this article we have summarized the results of our research carried out since 2016 and devoted to single-layer and multilayer (In,Ga)As structures epitaxially grown at low temperatures on (111)A-oriented GaAs and (411)-oriented InP substrates, and the generation of THz oscillations by irradiating femtosecond optical pulses directly to the surface of these films or to a gap of photoconductive antennas manufactured on the surface of the films. Each of the films, in terms of its crystalline structure and THz generation efficiency, was compared with a film of similar composition grown on a GaAs or InP substrate with a standard surface orientation (100). It has been shown that films grown at low temperature on non-standard (111)A, (411)A substrates are saturated with extended defects (twins, stacking faults, low-angle boundaries of mosaic blocks) and are partially or completely polycrystalline, but this is not an obstacle to more efficient generation of THz oscillations compared to similar films on standard substrates (100), which are less defective and provide significantly higher electron mobility.

About the authors

G. B. Galiev

National Research Centre “Kurchatov Institute”

Email: s_s_e_r_p@mail.ru
Acad. Kurchatov Squar., 1, Moscow, 123182 Russian Federation

I. S. Vasil’evskii

National Research Nuclear University “MEPhI”

Kashirskoe Shos., 31, Moscow, 115409 Russian Federation

A. N. Vinichenko

National Research Nuclear University “MEPhI”

Kashirskoe Shos., 31, Moscow, 115409 Russian Federation

E. A. Klimov

National Research Centre “Kurchatov Institute”; JSC Orion R&P Association

Acad. Kurchatov Squar., 1, Moscow, 123182 Russian Federation; Kosinskaya Str., 9, Moscow, 111538 Russian Federation

A. N. Klochkov

National Research Nuclear University “MEPhI”

Kashirskoe Shos., 31, Moscow, 115409 Russian Federation

S. S. Pushkarev

National Research Centre “Kurchatov Institute”; Moscow Institute of Physics and Technology

Acad. Kurchatov Squar., 1, Moscow, 123182 Russian Federation; Institutskij proezd, 9, Dolgoprudny`, Moscow Region, 141701 Russian Federation

A. L. Vasiliev

National Research Centre “Kurchatov Institute”; Moscow Institute of Physics and Technology

Acad. Kurchatov Squar., 1, Moscow, 123182 Russian Federation; Institutskij proezd, 9, Dolgoprudny`, Moscow Region, 141701 Russian Federation

I. N. Trunkin

National Research Centre “Kurchatov Institute”

Acad. Kurchatov Squar., 1, Moscow, 123182 Russian Federation

P. M. Solyankin

National Research Centre “Kurchatov Institute”

Acad. Kurchatov Squar., 1, Moscow, 123182 Russian Federation

A. P. Shkurinov

Faculty of Physics, Lomonosov Moscow State University

Leninskie Gory, 1, build. 2, Moscow, 119991 Russian Federation

A. M. Buryakov

MIREA – Russian Technological University

Prosp. Vernadskogo, 78, Moscow, 119454 Russian Federation

E. D. Mishina

MIREA – Russian Technological University

Prosp. Vernadskogo, 78, Moscow, 119454 Russian Federation

G. Kh. Kitaeva

Faculty of Physics, Lomonosov Moscow State University

Leninskie Gory, 1, build. 2, Moscow, 119991 Russian Federation

V. V. Kornienko

Faculty of Physics, Lomonosov Moscow State University

Leninskie Gory, 1, build. 2, Moscow, 119991 Russian Federation

K. A. Kuznetsov

Faculty of Physics, Lomonosov Moscow State University

Leninskie Gory, 1, build. 2, Moscow, 119991 Russian Federation

A. A. Leontyev

Faculty of Physics, Lomonosov Moscow State University

Leninskie Gory, 1, build. 2, Moscow, 119991 Russian Federation

References

  1. Yanze Xie. Morphology of InGaAs Multilayer Nanostructure on GaAs High-Index Surfaces. Graduate Theses and Dissertations. Fayetteville: Univ. Arkansas, 2009. 70 p. https://scholarworks.uark.edu/etd/46
  2. Missous M., O’Hagan S. // J. Appl. Phys. 1994. V. 75. № 7. P. 3396.
  3. Liu X., Prasad A., Chen W.M. et al. // Appl. Phys. Lett. 1994. V. 65. № 23. P. 3002.
  4. Liu X., Prasad A., Nishio J. et al. // Appl. Phys. Lett. 1995. V. 67. № 2. P. 279.
  5. Krotkus A., Bertulis K., Dapkus L. et al. // Appl. Phys. Lett. 1999. V. 75. № 21. P. 3336.
  6. Haiml M., Siegner U., Morier-Genoud F. et al. // Appl. Phys. Lett. 1999. V. 74. № 9. P. 1269.
  7. Woolf D. A., Sobiesierski Z., Westwood D.I., Williams R.H. // J. Appl. Phys. 1992. V. 71. №10. P. 4908.
  8. Paves L., Piazza F., Henini M., Harrison I. // Semicond. Sci. Technol. B. 1993. V. 8. № 2. P. 167.
  9. Галиев Г.Б., Мокеров В.Г., Слепнев Ю.В. и др. // ЖТФ. 1999. Т. 69. № 7. С. 68.
  10. Sadao Adachi. Properties of Semiconductor Alloys: Group-IV, III–V and II–VI Semiconductors. Chichester: John Wiley & Sons Ltd, 2009.
  11. Baker C., Gregory I.S., Tribe W.R. et al. // Appl. Phys. Lett. 2004. V. 85. № 21. P. 4965.
  12. Takazato A., Kamakura M., Matsui T., et al. // Appl. Phys. Lett. 2007. V. 91. №1. P. 011102.
  13. Галиев Г.Б., Климов Е.А., Клочков А.Н. и др. Материал для фотопроводящих антенн. Патент РФ № 2610222. Опубл. офиц. бюл. «Изобретения. Полезные модели» №4 от 10.02.2017.
  14. Галиев Г.Б., Есаулков М.Н., Климов Е.А. и др. // Тез. докл. XIII Российской конф. по физике полупроводников. Екатеринбург, 2–6 окт. 2017. Екатеринбург: ИФМ им. Михеева УрО РАН, 2017. C. 340.
  15. Klimov E., Klochkov A., Solyankin P. et al. // Int. J. Modern Phys. B. 2024. V. 38. №28. P. 2450378.
  16. Liliental-Weber Z., Swider W., Yu K.M., et al. // Appl. Phys. Lett. 1991. V. 58. №19. P. 2153.
  17. Галиев Г.Б., Климов Е.А., Грехов М.М. и др. // ФТП. 2016. Т. 50. № 2. С. 195.
  18. Галиев Г.Б., Климов Е.А., Васильев А.Л. и др. // Кристаллография. 2017. Т. 62. № 1. С. 77.
  19. Галиев Г.Б., Пушкарев С.С., Буряков А.М. и др. // ФТП. 2017. Т. 51. № 4. С. 529.
  20. Галиев Г.Б., Буряков А.М., Билык В.Р. и др. // Нано- и микросистемная техника. 2017. Т. 19. № 9. С. 515. https://doi.org/10.17587/nmst.19.515-526
  21. Klochkov A.N., Galiev G.B., Klimov E.A., Pushkarev S.S. // Phys. Stat. Sol. B. 2023. V. 260. № 2. Article No. 2200297.
  22. Галиев Г.Б., Климов Е.А., Клочков А.Н. и др. // ФТП. 2018. Т. 52. № 3. С. 395.
  23. Галиев Г.Б., Климов Е.А., Мальцев П.П., Пушкарев С.С. Полупроводниковая структура для фотопроводящих антенн. Патент РФ № 2624612. Опубл. офиц. бюл. «Изобретения. Полезные модели» №19 от 10.07.2017.
  24. Галиев Г.Б., Трунькин И.Н., Васильев А.Л., и др. // Кристаллография. 2019. Т. 64. № 2. С. 184.
  25. Вuryakov A.M., Ivanov M.S., Khusyainov D.I. et al. // Annalen der. Physik. 2021. V. 533. № 8. Article No. 2100041.
  26. Буряков А.М., Билык В.Р., Мишина Е.Д. и др. // Нано- и микросистемная техника. 2017. Т. 19. № 2. С. 77.
  27. Kлочков А.Н., Климов Е.А., Солянкин П.М. и др. // Оптика и спектроскопия. 2020. Т. 128. № 7. С. 1004.
  28. Галиев Г.Б., Климов Е.А., Клочков А.Н., и др. Материал на основе InGaAs на подложках InP для фотопроводящих антенн. Патент РФ № 2657306. Опубл. офиц. бюл. «Изобретения. Полезные модели» №17 от 20.06.2018.
  29. Miyagawa A., Yamamoto T., Ohnishi Y., et al. // J. Crystal Growth. 2002. V. 237–239. P. 1434.
  30. Галиев Г.Б., Климов Е.А., Пушкарев С.С. и др. // Кристаллография. 2017. Т. 62. № 4. С. 604.
  31. Галиев Г.Б., Грехов М.М., Китаева Г.Х. и др. // ФТП. 2017. Т. 51. № 3. С. 322.
  32. Галиев Г.Б., Трунькин И.Н., Климов Е.А. и др. // Кристаллография. 2017. Т. 62. № 6. С. 956.
  33. Kuznetsov K., Klochkov A., Leontyev A. et al. // Electronics. 2020. V. 9. Article No. 495.
  34. Kuznetsov K.A., Galiev G.B., Kitaeva G.Kh. et al. // Laser Physics Lett. 2018. V. 15. № 7. P. 076201.
  35. Roux Jean-Francois, Coutaz Jean-Louis, Krotkus Arunas // Appl. Phys. Lett. 1999. V. 74. № 17. P. 2462. https://doi.org/10.1063/1.123881

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences