Comparative analysis of magnetic and electronic properties of 2d phases of chromium tellurides
- Autores: Kartsev A.I.1,2, Safronov A.A.3
- 
							Afiliações: 
							- Computing Center of Far Eastern Branch of RAS
- Bauman Moscow State Technical University
- MIREA – Russian Technological University
 
- Edição: Volume 69, Nº 10 (2024)
- Páginas: 989-995
- Seção: НАНОЭЛЕКТРОНИКА
- URL: https://cardiosomatics.ru/0033-8494/article/view/684751
- DOI: https://doi.org/10.31857/S0033849424100085
- EDN: https://elibrary.ru/HPXJGV
- ID: 684751
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
The first-principle modeling of two different quasi-two-dimensional phases based on the volume phases Cr2Te3 and CrTe3 is carried out. Structural relaxation of the obtained 2D compounds and their volumetric prototypes was performed within the framework of the density functional method and the projection plane wave method. Magnetic anisotropy in various crystallographic planes of quasi-two-dimensional structures and corresponding bulk materials has been studied. An increase in magnetic anisotropy was found during the transition from bulk phases to quasi-two-dimensional phases of Cr2Te3/CrTe3. A charge density map is constructed and the density of electronic states is found for 2D Cr2Te3 and CrTe3 materials.
Palavras-chave
Texto integral
 
												
	                        Sobre autores
A. Kartsev
Computing Center of Far Eastern Branch of RAS; Bauman Moscow State Technical University
							Autor responsável pela correspondência
							Email: karec1@gmail.com
				                					                																			                												                	Rússia, 							Kim You Chen Str., 65, Khabarovsk, 680000; 2-nd Baumanskaya Str., 5, build.1, Moscow, 105005						
A. Safronov
MIREA – Russian Technological University
														Email: karec1@gmail.com
				                					                																			                												                	Rússia, 							prosp. Vernadskogo, 78, Moscow, 119454						
Bibliografia
- Zhang P., Xue S., Wang J. // Materials & Design. 2020. V. 192. P. 108726. https://doi.org/10.1016/j.matdes.2020.108726
- Zhang Z., Wang Z., Shi T. et al. // InfoMat. 2020. V. 2. №. 2. P. 261. https://doi.org/10.1002/inf2.12077
- Frazier A.B., Warrington R.O., Friedrich C. et al. // IEEE Trans. 1995. V. ID-42. № 5. P. 423. https://doi.org/10.1109/41.464603
- Charles Jr H. K. // Johns Hopkins APL Technical Digest. 2005. V. 26. №. 4. P. 402.
- Rohrer H.R. // Jap. J. Appl. Phys. 1993. V. 32. № 3. P. 1335.
- Keyes R.W. // IBM J. Research and Development. 1988. V. 32. № 1. P. 84.
- Гуляев Ю.В., Сандомирский В.Б., Суханов А.А., Ткач Ю.Я. // Успехи физ. наук. 1984. Т. 144. № 3. С. 475.
- Gong C., Zhang X. // Science. 2019. V. 363. № 6428. P. 4450. https://www.science.org/doi/10.1126/science.aav4450
- Kartsev A., Malkovsky S., Chibisov A. // Nanomaterials. 2021. V. 11. № 11. P. 2967. https://doi.org/10.3390/nano11112967Б
- Билык В.Р., Брехов К.А., Агранат М.Б., Мишина Е.Д. // Russ. Technol. J. 2023. Т. 11. № 3. С. 38. https://doi.org/10.32362/2500-316X-2023-11-3-38-4
- Negedu S. D., Kartsev A.I., Palit M. et al. // J. Phys. Chem. C. 2022. V. 126. № 30. P. 12545. https://doi.org/10.1021/acs.jpcc.2c02102
- Xiong Z., Hu C., Luo X. // Nano Lett. 2021. V. 21. № 24. P. 10486.
- Li R., Nie J.-H., Xianet J.-J. et al. // ACS Nano. 2022. V. 16. № 3. P. 4348.
- Yao J., Wang H., Yuan B. et al. // Adv. Mater. 2022. V. 34. № 23. P. 2200236.
- Medvedev M.G., Bushmarinov I.S., Sun J. et al. // Science. 2017. V. 355. № 6320. P. 49. https://www.science.org/doi/10.1126/science.aah5975
- Hafner J. // J. Computational Chem. 2008. V. 29. № 13. P. 2044. https://doi.org/10.1002/jcc.21057
- Perdew J.P., Ernzerhof M., Burke K. // J. Chem. Phys. 1996. V. 105. № 22. P. 9982.
- Kartsev A. A., Augustin M., Evans R.F.L. et al. // npj Computational Mater. 2020. V. 6. № 1. P. 150. https://www.nature.com/articles/s41524-020-00416-1
- Momma K, Izumi F. // J. Appl. Crystallography. 2008. V. 41. № 3. P. 653. https://doi.org/10.1107/S0021889808012016
- Synnatschke K., Badlyan N., Wrzesińska A. et al. // Ultrasonics Sonochemistry. 2023. V. 98. P. 106528.
- Pramanik T., Anupam R., Rik D. et al. // J. Magn. Magn. Mater. 2017. V. 437. P. 72.
- Bian M., Kamenskii N., Han M. et al. // Mater. Research Lett. 2021. V. 9. № 5. P. 205.
- Debbichi M., Debbichi L., Lebègue S. // Phys. Lett. A. 2020. V. 384. № 27. P. 126684.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 





