Magneto-optical properties of the BiIG/GGG/SiO2 heterostructure around the magnetic compensation point

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The results of Faraday effect and magnetic circular dichroism study in BiIG/GGG/SiO2 heterostructure are presented. The heterostructure consists of nanometer-thick layers of Bi3Fe5O12 (BiIG) iron garnet and Gd3Ga5O12 (GGG) paramagnetic garnet synthesized on SiO2 quartz substrate. It is shown that a magnetic compensation point arises in the BiIG layer due to ion diffusion at the BiIG/GGG interface. The specific features of diamagnetic transitions, caused by the presence of Fe3+ ions in different sublattices of the iron garnet and responsible for magneto-optical effects, are investigated around the magnetic compensation point. A sharp change in the energy of diamagnetic transitions is observed across the compensation point.

About the authors

A. S. Fedorov

Kotelnikov Institute of Radioengineering and Electronics RAS; Moscow Institute of Physics and Technology (National Research University)

Email: fedorov_a_s@inbox.ru
Mokhovaya Str., 11, bld. 7, Moscow, 125009 Russian Federation; Institutskiy per., 9, Dolgoprudny, Moscow Region, 141700 Russian Federation

S. A. Nikitov

Kotelnikov Institute of Radioengineering and Electronics RAS; Moscow Institute of Physics and Technology (National Research University)

Mokhovaya Str., 11, bld. 7, Moscow, 125009 Russian Federation; Institutskiy per., 9, Dolgoprudny, Moscow Region, 141700 Russian Federation

M. V. Logunov

Kotelnikov Institute of Radioengineering and Electronics RAS; Moscow Institute of Physics and Technology (National Research University); National Research University Higher School of Economics

Mokhovaya Str., 11, bld. 7, Moscow, 125009 Russian Federation; Institutskiy per., 9, Dolgoprudny, Moscow Region, 141700 Russian Federation; Pokrovsky Boulevard, 11, Moscow, 109028 Russian Federation

References

  1. Zvezdin A.K., Kotov V.A. Modern Magnetooptics and Magnetooptical Materials. Bristol: Inst. Phys. Publ., 1997.
  2. Deb M., Popova E., Fouchet A., Keller N. // J. Phys. D: Appl. Phys. 2012. V. 45. № 45. P. 455001.
  3. Levy M., Borovkova O.V., Sheidler C., et al. // Optica. 2019. V. 6. № 5. P. 642.
  4. Bi L., Hu J., Jiang P., et al. // Materials. 2013. V. 6. № 11. P. 5094.
  5. Pintus P., Ranzani L., Pinna S., et al. // Nature Electronics. 2022. V. 5. № 9. P. 604.
  6. Adachi N., Denysenkov V.P., Khartsev S.I. et al. // J. Appl. Phys. 2000. V. 88. № 5. P. 2734.
  7. Levy M., Chakravarty A., Huang H.-C., Osgood R.M. // Appl. Phys. Lett. 2015. V. 107. № 1. P. 011104.
  8. Балабанов Д.Е., Котов В.А., Шавров В.Г. и др. // РЭ. 2017. Т. 62. № 1. С. 70.
  9. Zhang T., Yang Y., Wu D., et al. // Optical Materials Express. 2024. V. 14. № 3. P. 767.
  10. Lutsev L.V., Dubovoy V.A., Stognij A.I. et al. // J. Appl. Phys. 2020. V. 127. № 18. P. 183903.
  11. Sharko S.A., Serokurova A.I., Novitskii N.N. et al. // Ceramics. 2023. V. 6. P. 1415–1433.
  12. Logunov M.V., Safonov S.S., Fedorov A.S., et al. // Phys. Rev. Appl. 2021. V. 15. № 6. P. 064024.
  13. Kim S.K., Beach G.S.D., Lee K.-J., et al. // Nature Materials. 2022. V. 21. № 1. P. 24.
  14. Дровосеков А.Б., Холин Д.И., Крейнес Н.М. // Письма в ЖЭТФ. 2020. Т. 131. № 1. С. 149.
  15. Zhang T., Yang Y., Wu D. et al. // Optical Materials Express. 2024. V. 14. № 3. P. 767.
  16. Dionne. G.F. Magnetic Oxides. Boston: Springer US, 2009.
  17. Dionne G.F., Allen G.A. // J. Appl. Phys. 1993. V. 73. № 10. P. 6127.
  18. Levallois J., Nedoliuk I.O., Crassee I., Kuzmenko A.B. // Rev. Scientific Instruments. 2015. V. 86. № 3. P. 033906.
  19. Ветошко П.М., Бержанский В.Н., Полулях С.Н. и др. // РЭ. 2023. Т. 68. № 4. С. 391.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences