Экстракция ионов Ti(IV) из хлоридных растворов гидрофобным глубоким эвтектическим растворителем Aliquat 336/ментол
- Авторы: Кожевникова А.В.1, Уварова Е.С.1,2, Лобович Д.В.1, Милевский Н.А.1, Заходяева Ю.А.1, Вошкин А.А.1
- 
							Учреждения: 
							- Институт общей и неорганической химии им. Н.С. Курнакова РАН
- Российский химико-технологический университет им. Д.И. Менделеева
 
- Выпуск: Том 57, № 6 (2023)
- Страницы: 631-637
- Раздел: Статьи
- Статья опубликована: 01.11.2023
- URL: https://cardiosomatics.ru/0040-3571/article/view/652838
- DOI: https://doi.org/10.31857/S004035712306012X
- EDN: https://elibrary.ru/HGEDXD
- ID: 652838
Цитировать
Полный текст
 Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Доступ платный или только для подписчиков
		                                							Доступ платный или только для подписчиков
		                                					Аннотация
Гидрометаллургические методы остаются одними из самых перспективных для переработки литий-ионных батарей, а жидкость-жидкостная экстракция служит ключевым этапом разделения сложной смеси элементов, входящих в состав анода и катода. Развитие и усложнение состава элементов питания, в частности активное производство литий-титанатных анодов, требует дополнительных исследований по экстракции. В работе подробно изучена экстракция ионов Ti(IV) гидрофобным глубоким эвтектическим растворителем Aliquat 336/ментол, который ранее успешно применялся для разделения элементов из растворов выщелачивания катодов типа NMC (LiNiMnCoO2). Были получены данные по экстракции ионов титана(IV) в зависимости от кислотности среды, концентрации хлорид-ионов, а также концентрации экстрагента в глубоком эвтектическом растворителе. На основании этих данных был предложен механизм экстракции ионов титана(IV). В завершение была предложена система для эффективной регенерации экстрагента. Результат этой работы может быть использован для создания экстракционной схемы разделения растворов выщелачивания литий-ионных батарей с литий-титанатным анодом.
Об авторах
А. В. Кожевникова
Институт общей и неорганической химии им. Н.С. Курнакова РАН
														Email: yz@igic.ras.ru
				                					                																			                												                								Россия, Москва						
Е. С. Уварова
Институт общей и неорганической химии им. Н.С. Курнакова РАН; Российский химико-технологический университет им. Д.И. Менделеева
														Email: yz@igic.ras.ru
				                					                																			                												                								Россия, Москва; Россия, Москва						
Д. В. Лобович
Институт общей и неорганической химии им. Н.С. Курнакова РАН
														Email: yz@igic.ras.ru
				                					                																			                												                								Россия, Москва						
Н. А. Милевский
Институт общей и неорганической химии им. Н.С. Курнакова РАН
														Email: yz@igic.ras.ru
				                					                																			                												                								Россия, Москва						
Ю. А. Заходяева
Институт общей и неорганической химии им. Н.С. Курнакова РАН
							Автор, ответственный за переписку.
							Email: yz@igic.ras.ru
				                					                																			                												                								Россия, Москва						
А. А. Вошкин
Институт общей и неорганической химии им. Н.С. Курнакова РАН
														Email: yz@igic.ras.ru
				                					                																			                												                								Россия, Москва						
Список литературы
- Mohr M., Peters J.F., Baumann M., Weil M. Toward a Cell-chemistry Specific Life Cycle Assessment of Lithium-ion Battery Recycling Processes // J. Ind. Ecol. 2020. V. 24. P. 1310–1322. https://doi.org/10.1111/jiec.13021
- Zen X., Li J., Singh N. Recycling of Spent Lithium-Ion Battery: A Critical Review // Crit. Rev. Environ. Sci. Technol. 2014. V. 44. P. 1129–1165.https://doi.org/10.1080/10643389.2013.763578
- Winslow K.M., Laux S.J., Townsend T.G. A Review on the Growing Concern and Potential Management Strategies of Waste Lithium-Ion Batteries // Resour. Conserv. Recycl. 2018. V. 129. P. 263–277. https://doi.org/10.1016/j.resconrec.2017.11.001
- Vaalma C., Buchholz D., Weil M., Passerini S. A Cost and Resource Analysis of Sodium-Ion Batteries // Nat. Rev. Mater. 2018. V. 3. P. 18013. https://doi.org/10.1038/natrevmats.2018.13
- Ferg E.E., Schuldt F., Schmidt J. The Challenges of a Li-Ion Starter Lighting and Ignition Battery: A Review from Cradle to Grave // J. Power. Sources. 2019. V. 423. P. 380–403. https://doi.org/10.1016/j.jpowsour.2019.03.063
- Kumar B., Srivastava R.R., Barik S.P. Hydrometallurgical Recycling of Lithium-Titanate Anode Batteries: Leaching Kinetics and Mechanisms, and Life Cycle Impact Assessment // Miner. Eng. 2023. V. 202. P. 108289. https://doi.org/10.1016/j.mineng.2023.108289
- Barik S.P., Prabaharan G., Kumar L. Leaching and Separation of Co and Mn from Electrode Materials of Spent Lithium-Ion Batteries Using Hydrochloric Acid: Laboratory and Pilot Scale Study // J. Clean. Prod. 2017. V. 147. P. 37–43.https://doi.org/10.1016/j.jclepro.2017.01.095
- Barik S.P., Prabaharan G., Kumar B. An Innovative Approach to Recover the Metal Values from Spent Lithium-Ion Batteries // Waste. Management. 2016. V. 51. P. 222–226.https://doi.org/10.1016/j.wasman.2015.11.004
- Gao W., Song J., Cao H., Lin X., Zhang X., Zheng X., Zhang Y., Sun Z. Selective Recovery of Valuable Metals from Spent Lithium-Ion Batteries – Process Development and Kinetics Evaluation // J. Clean. Prod. 2018. V. 178. P. 833–845.https://doi.org/10.1016/j.jclepro.2018.01.040
- Cao J., Su E. Hydrophobic Deep Eutectic Solvents: The New Generation of Green Solvents for Diversified and Colorful Applications in Green Chemistry // J. Clean. Prod. 2021. V. 314. P. 127965.https://doi.org/10.1016/j.jclepro.2021.127965
- van Osch D.J.G.P., Zubeir L.F., van den Bruinhorst A., Rocha M.A.A., Kroon M.C. Hydrophobic Deep Eutectic Solvents as Water-Immiscible Extractants // Green Chemistry. 2015. V. 17. P. 4518–4521. https://doi.org/10.1039/C5GC01451D
- Milevskii N.A., Zinov’eva I.V., Kozhevnikova A.V., Zakhodyaeva Y.A., Voshkin A.A. Sm/Co Magnetic Materials: A Recycling Strategy Using Modifiable Hydrophobic Deep Eutectic Solvents Based on Trioctylphosphine Oxide // Int. J. Mol. Sci. 2023. V. 24. P. 14032. https://doi.org/10.3390/ijms241814032
- Xue K., Fan D., Wang X., Dong Z., Zhu Z., Cui P., Meng F., Wang Y., Qi J. Lithium Extraction from Aqueous Medium Using Hydrophobic Deep Eutectic Solvents // J. Environ. Chem. Eng. 2023. V. 11. P. 110490. https://doi.org/10.1016/j.jece.2023.110490
- Zinov’eva I.V., Kozhevnikova A.V., Milevskii N.A., Zakhodyaeva Yu.A., Voshkin A.A. Extraction of Cu(II), Ni(II), and Al(III) with the Deep Eutectic Solvent D2EHPA/Menthol // Theoretical Foundations of Chemical Engineering. 2022. V. 56. P. 221–229. https://doi.org/10.1134/S0040579522020178
- Zhu Z., Zhang W., Cheng C.Y. A Literature Review of Titanium Solvent Extraction in Chloride Media // Hydrometallurgy. 2011. V. 105. P. 304–313. https://doi.org/10.1016/j.hydromet.2010.11.006
- Filiz M., Sayar A.A. Extraction of Titanium(IV) from Aqueous Hydrochloric Acid Solutions Into Alamine 336-M-XYLene Mixtures // Chem. Eng. Commun. 2006. V. 193. P. 1127–1141. https://doi.org/10.1080/00986440500354457
- Tang W., Chen X., Zhou T., Duan H., Chen Y., Wang J. Recovery of Ti and Li from Spent Lithium Titanate Cathodes by a Hydrometallurgical Process // Hydrometallurgy. 2014. V. 147–148. P. 210–216. https://doi.org/10.1016/j.hydromet.2014.05.013
- Zhu K., Wei Q., Liu K., Li H., Ren X. Design and Combination of Magnetic Ionic Liquids and Hydrophobic Deep Eutectic Solvents for Safer Extraction of Titanium: Physicochemical Properties and Toxicity Studies // Green. Chemistry. 2022. V. 24. P. 7481–7491. https://doi.org/10.1039/D2GC01874H
- Kozhevnikova A.V., Zinov’eva I.V., Zakhodyaeva Y.A., Baranovskaya V.B., Voshkin A.A. Application of Hydrophobic Deep Eutectic Solvents in Extraction of Metals from Real Solutions Obtained by Leaching Cathodes from End-of-Life Li-Ion Batteries // Processes. 2022. V. 10. P. 2671. https://doi.org/10.3390/pr10122671
- Milevskii N.A., Zinov’eva I.V., Zakhodyaeva Yu.A., Voshkin A.A. Separation of Li(I), Co(II), Ni(II), Mn(II), and Fe(III) from Hydrochloric Acid Solution Using a Menthol-Based Hydrophobic Deep Eutectic Solvent // Hydrometallurgy. 2022. V. 207. P. 105777. https://doi.org/10.1016/j.hydromet.2021.105777
- Коростелев П.П. Фотометрический и Комплексометрический Анализ в Металлургии; Москва, 1984.
- Kislik V., Eyal A. Acidity Dependence of Ti(IV) Extraction: A critical Analysis // Solvent Extraction and Ion Exchange. 1993. V. 11. P. 259–283. https://doi.org/10.1080/07366299308918155
- Sarangi K., Padhan E., Sarma P.V.R.B., Park K.H., Das R.P. Removal/Recovery of Hydrochloric Acid Using Alamine 336, Aliquat 336, TBP and Cyanex 923. Hydrometallurgy. 2006. V. 84. P. 125–129. https://doi.org/10.1016/j.hydromet.2006.03.063
- Mishra R.K., Rout P.C., Sarangi K., Nathsarma K.C. Solvent Extraction of Fe(III) from the Chloride Leach Liquor of Low Grade Iron Ore Tailings Using Aliquat 336 // Hydrometallurgy. 2011. V. 108. P. 93–99. https://doi.org/10.1016/j.hydromet.2011.03.003
- Good M.L., Bryan S.E. Extraction of Group VIII Metals by Long Chain Alkyl Amines—II // J. Inorganic and Nuclear Chemistry. 1961. V. 20. P. 140–146. https://doi.org/10.1016/0022-1902(61)80471-5
- Sarangi K., Padhan E., Sarma P.V.R.B., Park K.H., Das R.P. Removal/Recovery of Hydrochloric Acid Using Alamine 336, Aliquat 336, TBP and Cyanex 923 // Hydrometallurgy. 2006. V. 84. P. 125–129. https://doi.org/10.1016/j.hydromet.2006.03.063
Дополнительные файлы
 
				
			 
						 
						 
						 
					 
						 
									

 
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail 







