Research of the Thermophysical Properties of CFRP with Different Reinforcements by Methods of a Stationary Heat Flow and Differential Scanning Calorimeter with Temperature Modulation
- Autores: Popov I.A.1, Hamidullin O.L.1, Amirova L.M.1, Popov I.A.2
-
Afiliações:
- Tupolev Kazan National Research Technical University
- Kazan State Agrarian University
- Edição: Volume 61, Nº 5 (2023)
- Páginas: 706-713
- Seção: Thermophysical Properties of Materials
- URL: https://cardiosomatics.ru/0040-3644/article/view/653072
- DOI: https://doi.org/10.31857/S0040364423050137
- ID: 653072
Citar
Resumo
The paper studies the thermal conductivity and specific heat capacity of carbon fiber reinforced plastic (CFRP) with various reinforcements using the methods of a stationary heat flow (SHF) and differential scanning calorimetry with temperature modulation. The values of the thermal conductivity and heat capacity, as well as their dependence on temperature, are established in the temperature range from –20 to 100°C. The changes in the thermal conductivity range from 0.400 to 0.515 W/(m K); and the specific heat capacity coefficient, from 923 to 984 J/(kg K). The results obtained can be used to calculate and design systems and installations using PCMs as structural materials and to calculate the parameters of the technological process for the production of these materials.
Sobre autores
I. Popov
Tupolev Kazan National Research Technical University
Email: popov-igor-alex@yandex.ru
Kazan, Russia
O. Hamidullin
Tupolev Kazan National Research Technical University
Email: popov-igor-alex@yandex.ru
Kazan, Russia
L. Amirova
Tupolev Kazan National Research Technical University
Email: popov-igor-alex@yandex.ru
Россия, г. Казань
I. Popov
Kazan State Agrarian University
Autor responsável pela correspondência
Email: popov-igor-alex@yandex.ru
Kazan, Russia
Bibliografia
- Li H., Zhu Q., Liu G., Zhu Q. Intrinsically and Extrinsically Anisotropic Heat Transport in Bulk Materials and Nanostructures: A Review // Int. J. Heat Mass Transfer. 2022. V. 196. P. 123307.
- Tian W., Qi L., Fu M.W. Multi-scale and Multi-step Modeling of Thermal Conductivities of 3D Braided Composites // Int. J. Mech. Sci. 2022. V. 228. P. 107466.
- Chen J. Effects of Different Factors on the Heat Conduction Properties of Carbon Films and Fibers // East European Journal of Physics. 2022. № 2. P. 91.
- Guo Y., Ruan K., Shi X., Yang X. Factors Affecting Thermal Conductivities of the Polymers and Polymer Composites: A Review // Composites Science and Technology. 2020. V. 193. P. 108134.
- Zhai S., Zhang P., Xian Y., Zeng J. Effective Thermal Conductivity of Polymer Composites: Theoretical Models and Simulation Models // Int. J. Heat Mass Transfer. 2018. V. 117. P. 358.
- Chen H., Ginzburg V.V., Yang J., Yang Y., Liu W., Huang Y., Du L., Chen B. Thermal Conductivity of Polymer-based Composites: Fundamentals and Applications // Progress in Polymer Science. 2016. V. 59. P. 41.
- Zhou T., Zhao Y., Rao Z. Fundamental and Estimation of Thermal Contact Resistance between Polymer Matrix Composites: A Review // Int. J. Heat Mass Transfer. 2022. V. 189. P. 122701.
- Yang M., Li X., Yuan J., Wen Z., Kang G. A Comprehensive Study on the Effective Thermal Conductivity of Random Hybrid Polymer Composites // Int. J. Heat Mass Transfer. 2022. V. 182. P. 121936.
- Wu Q., Liu C., Xu Y., Li G., Zhang H., Huang J., Miao J. Carbon Fiber Reinforced Elastomeric Thermal Interface Materials for Spacecraft // Carbon. 2022. V. 187. P. 432.
- Wunderlich B. Thermal Analysis of Polymeric Materials. Berlin–Heidelberg–N.Y.: Springer, 2005. 894 p.
- Tritt T.M. Thermal Conductivity: Theory, Properties, and Applications. N.Y.: Kluwer Academic, Plenum Publishers, 2004. 290 p.
- Solorzano E., Reglero J.A., Rodrıguez-Perez M.A., Lehmhus D., Wichmann M., De Saja J.A. An Experimental Study on the Thermal Conductivity of Aluminium Foams by Using the Transient Plane Source Method // Int. J. Heat Mass Transfer. 2008. V. 51. P. 6259.
- Assael M.J., Antoniadis K.D., Tzetzis D. The Use of the Transient Hot-wire Technique for Measurement of the Thermal Conductivity of an Epoxy-resin Reinforced with Glass Fibers and/or Carbon Multi-walled Nanotubes // Composites Science and Technology. 2008. V. 68. № 15–16. P. 3178.
- Parker W.J., Jenkins R.J., Butler C.P., Abbot G.L. FLASH Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity // J. Appl. Phys. 1961. V. 32. P. 1679.
- Chiu J., Fair P.G. Determination of Thermal Conductivity by Differential Scanning Calorimetry // Thermochimica Acta. 1979. V. 24. № 2. P. 267.
- Cahill D.G. Thermal Conductivity Measurement from 30 to 750 K: The 3ω Method // Review of Scientific Instruments. 1990. V. 61. P. 802.
- Govorkov S., Ruderman W., Horn M.W., Goodman R.B., Rothschild M. A New Method for Measuring Thermal Conductivity of Thin Films // Review of Scientific Instruments. 1997. V. 68. P. 3828.
- Jackson W.B., Amer N.M., Boccara A.C., Fournier D. Photothermal Deflection Spectroscopy and Detection // Applied Optics. 1981. V. 20. P. 1333.
- Jeona P.S., Kima J.H., Kimb H.J., Yoob J. Thermal Conductivity Measurement of Anisotropic Material Using Photothermal Deflection Method // Thermochimica Acta. 2008. V. 477. P. 32.
- Kuwahara M., Suzuki O., Takada S., Hata N., Fons P., Tominaga J. Thermal Conductivity Measurements of Low-k Films Using Thermoreflectance Phenomenon // Microelectronic Engineering. 2008. V. 85. P. 796.
- Li H., Zhu Q., Liu G., Zhu Q. Intrinsically and Extrinsically Anisotropic Heat Transport in Bulk Materials and Nanostructures: A Review // Int. J. Heat Mass Transfer. 2022. V. 196. P. 123307.
- Brennan W.P., Miller B., Whitewell J.C. Thermal Conductivity Measurements with the Differential Scanning Calorimeter // J. Appl. Polym. Sci. 1968. V. 21. P. 1800.
- Blaine R.L., Cassel R.B. Precision and Bias of the ASTM Test E1952 for Thermal Conductivity by Modulated Temperature DSC. Delaware: Thermal Library Application Brief TA265, TA Instruments New Castle, 2001. P. 26.
- Cecen V., Tavman I.H., Kok M., Aydogdu Y. Epoxy-and Polyester-based Composites Reinforced with Glass, Carbon, and Aramid Fabrics: Measurement of Heat Capacity and Thermal Conductivity of Composites by Differential Scanning Calorimetry // Polymer Composites. 2009. V. 30. № 9. P. 1299.
- Hu M., Yu D., Wei J. Thermal Conductivity Determination of Small Polymer Samples by Differential Scanning Calorimetry // Polymer Testing. 2007. V. 26. № 3. P. 333.
- Kalogiannakis G., Van Hemelrijck D., Van Assche G. Measurements of Thermal Properties of Carbon/Epoxy and Glass/Epoxy Using Modulated Temperature Differential Scanning Calorimetry // Journal of Composite Materials. 2004. V. 38. № 2. P. 163.
- ASTM E1952-17. Standard Test Method for Thermal Conductivity and Thermal Diffusivity by Modulated Temperature Differential Scanning Calorimetry. Annual Book of ASTM Standards. USA, 2017. V. 14.01. 7 p.
- ГОСТ Р 57830-2017. Композиты. Определение теплопроводности и температуропроводности методом дифференциальной сканирующей калориметрии с температурной модуляцией. М.: Стандартинформ, 2017. 16 с.
- ASTM C518-21. Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus. Annual Book of ASTM Standards. USA, 2021. V. 04.06. 16 p.
- Sun Y., Lyu B., Yan B., Jiang G., Ma P. Preparation and Characterization of 3D Flexible High-distance Spacer Fabric/Foam Composite // Composite Structures. 2021. V. 261. P. 113549.
- Walbrück K., Drewier L., Witzleben S., Stephan D. Factors Influencing Thermal Conductivity and Compressive Strength of Natural Fiber-reinforced Geopolymer Foams // Open Ceramics. 2021. V. 5. P. 100065.
- Kyaw Oo D’Amore G., Marino A., Kaspar J. Numerical Modeling of Fire Resistance Test as a Tool to Design Lightweight Marine Fire Doors: A Preliminary Study // Journal of Marine Science and Engineering. 2020. V. 8. № 7. P. 520.
- Bergman T.L., Lavine A.S., Incropera F.P., Dewitt D.P. Fundamentals of Heat and Mass Transfer. 7th ed. Hoboken, New Jersey, USA: John Wiley & Sons, 2011. 1080 p.
- Gomes M.G., Flores-Colen I., da Silva F., Pedroso M. Thermal Conductivity Measurement of Thermal Insulating Mortars with EPS and Silica Aerogel by Steady-state and Transient Methods // Construction and Building Materials. 2018. V. 172. P. 696.
- Salmon D.R., Tye R.P. An Inter-comparison of a Steady-state and Transient Methods for Measuring the Thermal Conductivity of Thin Specimens of Masonry Materials // Journal of Building Physics. 2011. V. 34. № 3. P. 247.
- Хамидуллин О.Л., Низамиев Р.Р., Балькаев Д.А., Амирова Л.М. Определение теплопроводности полимеров методом дифференциальной сканирующей калориметрии с температурной модуляцией // Тепловые процессы в технике. 2022. Т. 14. № 4. С. 186.
- Popov I.A., Konstantinov D.Yu., Zhukova Yu.V., Chorny A.D. Thermal Conductivity and Specific Heat of Carbon-plastic Polymer Composite Materials // High Temperature Material Processes. 2022. V. 26. № 4. P. 25.
- Попов И.А., Константинов Д.Ю., Кузин А.А., Русских М.Д. Исследование теплофизических свойств углепластиковых полимерных композитных материалов // Тепловые процессы в технике. 2022. Т. 14. № 3. С. 116.
Arquivos suplementares
