Постковидный синдром: патофизиология системных дисрегуляций
- Авторы: Гомазков О.А.1
- 
							Учреждения: 
							- Научно-исследовательский институт биомедицинской химии им. В.Н. Ореховича
 
- Выпуск: Том 143, № 3 (2023)
- Страницы: 229-238
- Раздел: Статьи
- Статья получена: 02.02.2025
- Статья опубликована: 01.05.2023
- URL: https://cardiosomatics.ru/0042-1324/article/view/653248
- DOI: https://doi.org/10.31857/S0042132423030067
- EDN: https://elibrary.ru/QQAOKZ
- ID: 653248
Цитировать
Полный текст
 Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Доступ платный или только для подписчиков
		                                							Доступ платный или только для подписчиков
		                                					Аннотация
Анализируются основные процессы постковидного синдрома как версии продленной патологии острого респираторного заболевания COVID-19. Учитывая разнообразие проявлений постковидной патологии, выделяются основные блоки системных, клеточных и молекулярных дисрегуляций. В качестве основных причин рассматриваются последствия органных поражений в острой фазе COVID-19, персистентная активность “затаенных” патогенов и измененный статус иммунных систем больного. Постковидная патология, как мультисистемный синдром, отражает нарушения основных систем регуляции: стохастическую дезорганизацию иммунных ответов, дисфункцию сосудистого эндотелия, клеточное воспаление, дисбаланс систем свертывания и антитромбоза, девиацию аутоиммунных процессов и др. Эти выводы ориентируют на новые клеточные и биохимические мишени своевременной терапии. Разнообразный характер патогенеза предполагает избирательное использование средств терапии.
Об авторах
О. А. Гомазков
Научно-исследовательский институт биомедицинской химии им. В.Н. Ореховича
							Автор, ответственный за переписку.
							Email: oleg-gomazkov@yandex.ru
				                					                																			                												                								Россия, Москва						
Список литературы
- Болиева Л.З., Малявин А.Г., Вялкова А.Б. Длительная персистенция вируса SARS-CoV-2 в организме как возможный механизм патогенеза долгого COVID-19 // Терапия. 2022. Т. 8 (10). С. 90–97.
- Гомазков О.А. Covid-19. Патогенез сосудистых поражений, или дьявол кроется в деталях. 2021. М.: ИКАР, 72 с.
- Гомазков О.А. Нейротропизм как механизм поражающего действия коронавируса // Успехи соврем. биол. 2022. Т. 142 (4). С. 404–416.
- Макацария А.Д., Слуханчук Е.В., Бицадзе В.О. и др. Тромботический шторм, нарушения гемостаза и тромбовоспаление в условиях COVID-19 // Акушерство, гинекол. репрод. 2021. 15 (5). С. 499–514. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2021.247
- Методические рекомендации “Особенности течения Long-COVID-19 инфекции. Терапевтические и реабилитационные мероприятия” / Ред. А.И. Мартынов (утверждены на ХVI Национальном Конгрессе терапевтов 18.11.2021). 217 с.
- Ackermann M, Verleden S.E., Kuehnel M. et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19 // N. Engl. J. Med. 2020. V. 383 (2). P. 120–128. https://doi.org/10.1056/NEJMoa2015432
- Ahamed J., Laurence J.J. Long COVID endotheliopathy: hypothesized mechanisms and potential therapeutic approaches // Clin. Invest. 2022. V. 132 (15). P. e161167.
- Ambrosino P., Bachetti T., D’Anna S.E. et al. Mechanisms and clinical implications of endothelial dysfunction in arterial hypertension // J. Cardiovasc. Dev. Dis. 2022. V. 9 (5). P. 136. https://doi.org/10.3390/jcdd9050136
- Amenta E.M., Spallone A., Rodriguez-Barradas M.C. et al. Post-acute COVID-19: an overview and approach to classification // Open Forum Infect. Dis. 2020. V. 7 (12). P. ofaa509. https://doi.org/10.1093/ ofid/ofaa509
- Ayoubkhani D., Khunti K., Nafilyan V. et al. Post-covid syndrome in individuals admitted to hospital with covid-19: retrospective cohort study // BMJ. 2021. V. 372. P. n693. https://doi.org/10.1136/bmj.n693
- Babkina A.S., Ostrova I.V., Yadgarov M.Y. et al. The role of von Willebrand factor in the pathogenesis of pulmonary vascular thrombosis in COVID-19 // Viruses. 2022. V. 14 (2). P. 211. https://doi.org/10.3390/v14020211
- Bogdanov V.Y., Khirmanov V.N. SARS-CoV-2, platelets, and endothelium: coexistence in space and time, or a pernicious ménage à trois? // Vasc. Biol. 2022. V. 4 (1). P. R35–R43. https://doi.org/10.1530/VB-22-0004
- Castanares-Zapatero D., Chalon P., Kohn L. et al. Pathophysiology and mechanism of long COVID: a comprehensive review // Ann. Med. 2022. V. 54 (1). P. 1473–1487. https://doi.org/10.1080/07853890.2022.2076901
- Chang H.W., Leu S., Sunet C.K. et al. Level and value of circulating endothelial progenitor cells in patients with acute myocardial infarction undergoing primary coronary angioplasty: in vivo and in vitro studies // Transl. Res. 2010. V. 156 (4). P. 251–263. https://doi.org/10.1016/j.trsl.2010.07.010
- Che Mohd Nassir C.M.N., Hashim S., Wong K.K. et al. COVID-19 infection and circulating microparticles – reviewing evidence as microthrombogenic risk factor for cerebral small vessel disease // Mol. Neurobiol. 2021. V. 58 (8). P. 4188–4215. https://doi.org/10.1007/s12035-021-02457-z
- Chen Y., Xu Z., Wang P. et al. New-onset autoimmune phenomena post-COVID-19 vaccination // Immunology. 2022. V. 165 (4). P. 386–401. https://doi.org/10.1111/imm.13443
- Chioh F.W., Fong S.W., Young B.E. Convalescent COVID-19 patients are susceptible to endothelial dysfunction due to persistent immune activation // Elife. 2021. V. 10. P. e64909. https://doi.org/10.7554/eLife.64909
- Datta S.D., Talwar A., Lee J.T. A proposed framework and timeline of the spectrum of disease due to SARS-CoV-2 infection:illness beyond acute infection and public health implications // JAMA. 2020. V. 324 (22). P. 2251–2252. https://doi.org/10.1001/jama.2020.22717
- DiSabato D.J., Quan N., Godbout J.P. Neuroinflammation: the devil is in the details // J. Neurochem. 2016. V. 139. Sup. 2. P. 136–153. https://doi.org/10.1111/jnc.13607
- Doeblin P., Steinbeis F., Scannell C.M. et al. Brief research report: quantitative analysis of potential coronary microvascular disease in suspected long-COVID syndrome // Front. Cardiovasc. Med. 2022. V. 9. P. 877416. https://doi.org/10.3389/fcvm.2022.877416
- Dorward D.A., Russell C.D, Um I.H. et al. Tissue-specific immunopathology in fatal COVID-19 // Am. J. Respir. Crit. Care Med. 2021. V. 203 (2). P. 192–201. https://doi.org/10.1164/rccm.202008-3265OC
- Dotan A., Muller S., Kanduc D. et al. The SARS-CoV-2 as an instrumental trigger of autoimmunity // Autoimmun. Rev. 2021. V. 20 (4). P. 102792. https://doi.org/10.1016/j.autrev.2021.102792
- Fogarty H., Ward S.E., Townsend L. et al. Sustained VWF-ADAMTS-13 axis imbalance and endotheliopathy in longCOVID syndrome is related to immune dysfunction // J. Thromb. Haemost. 2022. V. 20 (10). P. 2429–2438. https://doi.org/10.1111/jth.15830
- Fujinami R.S., von Herrath M.G., Christen U., Whittonl J.L. Molecular mimicry, bystander activation, or viral persistence: infections and autoimmune disease // Clin. Microbiol. Rev. 2006. V. 19. P. 80–94. https://doi.org/10.1128/CMR.19.1.80-94.2006
- Fujisawa T., Tura-Ceide O., Hunter A. et al. Endothelial progenitor cells do not originate from the bone marrow // Circulation. 2019. V. 140. P. 1524–1526.https://doi.org/10.1161/CIRCULATIONAHA.119.042351
- García-Abellán J., Fernández M., Padilla S. et al. Immunologic phenotype of patients with long-COVID syndrome of 1-year duration // Front. Immunol. 2022. V. 13. P. 920627. https://doi.org/10.3389/fimmu.2022.920627
- Gomazkov O.A. Damage of the vascular endothelium as a leading mechanism of COVID-19 systemic pathology // Biol. Bull. Rev. 2021. V. 11 (6). P. 559–566. https://doi.org/10.1134/S2079086421060049
- Gupta A., Madhavan M.V., Sehgal K. et al. Extrapulmonary manifestations of COVID-19 // Nat. Med. 2020. V. 26. P. 1017–1032. https://doi.org/10.1038/s41591-020-0968-3
- Haffke M., Freitag H., Rudolf G. et al. Endothelial dysfunction and altered endothelial biomarkers in patients with post-COVID-19 syndrome and chronic fatigue syndrome (ME/CFS) // J. Transl. Med. 2022. V. 20. P. 138. https://doi.org/10.1186/s12967-022-03346-2
- Iba T., Levy J.H., Levi M., Thachil J. Coagulopathy in COVID-19 // J. Thromb. Haemost. 2020. V. 18 (9). P. 2103–2109. https://doi.org/10.1111/jth.14975
- Jacobs J.J.L. Persistent SARS-2 infections contribute to long COVID-19 // Med. Hypotheses. 2021. V. 149. https://doi.org/10.1016/j.mehy.2021.110538
- Jud P., Gressenberger P., Muster V. et al. Evaluation of endothelial dysfunction and inflammatory vasculopathy after SARS-CoV-2 infection – a cross-sectional study // Front. Cardiovasc. Med. 2021. V. 8. P. 750887. https://doi.org/10.3389/fcvm.2021.750887
- Kell D.B., Laubscher G.J., Pretorius E. A central role for amyloid fibrin microclots in long COVID/PASC: origins and therapeutic implications // Biochem. J. 2022. V. 479 (4). P. 537–559. https://doi.org/10.1042/BCJ20220016
- Kemp S.A., Collier D.A., Datir R.P. et al. SARS-CoV-2 evolution during treatment of chronic infection // Nature. 2021. V. 592 (7853). P. 277–282. https://doi.org/10.1038/s41586-021-03291-y
- Khoshkam Z., Aftabi Y., Stenvinkel P. et al. Recovery scenario and immunity in COVID-19 disease: a new strategy to predict the potential of reinfection // J. Adv. Res. 2021. V. 31. P. 49–60. https://doi.org/10.1016/j.jare.2020.12.013
- Kostov K. The causal relationship between endothelin-1 and hypertension: focusing on endothelial dysfunction, arterial stiffness, vascular remodeling,and blood pressure regulation // Life (Basel). 2021. V. 11 (9). P. 986. https://doi.org/10.3390/ life11090986
- Koutroumpi M., Dimopoulos S., Psarra K. et al. Circulating endothelial and progenitor cells: evidence from acute and long-term exercise effects // World J. Cardiol. 2012. V. 4 (12). P. 312–326. https://doi.org/10.4330/wjc.v4.i12.312
- Kruger A., Vlok M., Turner S. et al. Proteomics of fibrin amyloid microclots in long COVID/post-acute sequelae of COVID-19 (PASC) shows many entrapped pro-inflammatory molecules that may also contribute to a failed fibrinolytic system // Cardiovasc. Diabetol. 2022. V. 21 (1). P. 190. https://doi.org/10.1186/s12933-022-01623-4
- Ladikou E.E., Sivaloganathan H., Milne K.M. et al. Von Willebrand factor (vWF): marker of endothelial damage and thrombotic risk in COVID-19? // Clin. Med. 2020. V. 20 (5). P. e178–e182. https://doi.org/10.7861/clinmed.2020-0346
- Liew A., Barry F., O’Brien T. Endothelial progenitor cells: diagnostic and therapeutic considerations // Bioessays. 2006. V. 28 (3). P. 261–270. https://doi.org/10.1002/bies.20372
- Liotti F.M., Menchinelli G., Marchetti S. et al. Assessment of SARS-CoV-2 RNA test results among patients who recovered from COVID-19 with prior negative results // JAMA Int. Med. 2020. V. 181. P. 702–704. https://doi.org/10.1001/jamainternmed.2020.7570
- Lowenstein C.J., Solomon S.D. Severe COVID-19 is a microvascular disease // Circulation. 2020. V. 142 (17). P. 1609–1611. https://doi.org/10.1161/CIRCULATIONAHA.120.050354
- Maltezou H.C., Pavli A., Tsakris A. Post-COVID syndrome: an insight on its pathogenesis // Vaccines (Basel). 2021. V. 9 (5). P. 497. https://doi.org/10.3390/vaccines9050497
- Mantovani A., Morrone M.C., Patronoet P. et al. Long Covid: where we stand and challenges ahead. Covid-19 Commission of the Accademia Nazionale dei Lincei // Cell Death Differ. 2022. V. 29 (10). P. 1891–1900. https://doi.org/10.1038/s41418-022-01052-6
- Mehandru S., Merad M. Pathological sequelae of long-haul Covid // Nat. Immunol. 2022. V. 23. P. 194–202. https://doi.org/10.1038/s41590-021-01104-y
- Ostergaard L. SARS CoV-2 related microvascular damage and symptoms during and after COVID-19: consequences of capillary transit-time changes, tissue hypoxia and inflammation // Physiol. Rep. 2021. V. 9 (3). P. e14726. https://doi.org/10.14814/phy2.14726
- Proal A.D., VanElzakker M.B. Long COVID or post-acute sequelae of COVID-19 (PASC): an overview of biological factors that may contribute to persistent symptoms // Front Microbiol. 2021. V. 12. P. 698169.
- Prasannan N., Heightman M., Hillman T. et al. Impaired exercise capacity in post-COVID-19 syndrome: the role of VWF-ADAMTS13 axis // Blood Adv. 2022. V. 6 (13). P. 4041–4048. https://doi.org/10.1182/bloodadvances.2021006944
- Priya S.P., Sunil P.V., Varmaet S. et al. Direct, indirect, post-infection damages induced by coronavirus in the human body: an overview // Virusdisease. 2022. V. 33 (4). P. 429–444. https://doi.org/10.1007/s13337-022-00793-9
- Puelles V.G., Lütgehetmann M., Lindenmeyer M.T. et al. Multiorgan and renal tropism of SARS-CoV-2 // New Engl. J. Med. 2020. V. 383. P. 590–592. https://doi.org/10.1056/NEJMc2011400
- Raman B., Cassar M.P., Tunnicliffe E.M. et al. Medium-term effects of SARS-CoV-2 infection on multiple vital organs, exercise capacity, cognition, quality of life and mental health, post-hospital discharge // EClinicalMedicine. 2021. V. 31. Art.100683. https://doi.org/10.1016/j.eclinm.2020.100683
- Ryan F.J., Hope C.M., Masavuli M.G. et al. Long-term perturbation of the peripheral immune system after SARS-CoV-2 infection // BMC Med. 2022. V. 20 (1). P. 26. https://doi.org/10.1186/s12916-021-02228-6
- Sarkesh A., Sorkhabi A.D., Sheykhsaran E. et al. Extrapulmonary clinical manifestations in COVID-19 patients // Am. J. Trop. Med. Hyg. 2020. V. 103 (5). P. 1783–1796. https://doi.org/10.4269/ajtmh.20-0986
- Scherbakov N., Szklarski M., Hartwiget J. et al. Peripheral endothelial dysfunction in myalgic encephalomyelitis /chronic fatigue syndrome // ESC Heart Fail. 2020. V. 7 (3). P. 1064–1071. https://doi.org/10.1002/ehf2.12633
- Sen S., McDonald S.P., Coates P.T.H., Bonder C.S. Endothelial progenitor cells: novel biomarker and promising cell therapy for cardiovascular disease // Clin. Sci. (Lond.). 2011. V. 120. P. 263–283. https://doi.org/10.1042/CS20100429
- Siddiqi H.K., Libby P., Ridker P.M. COVID-19 – a vascular disease // Trends Cardiovasc. Med. 2021. V. 31 (1). P. 1–5. https://doi.org/10.1016/j.tcm.2020.10.005
- Stein S.R., Ramelli S.C., Grazioliet A. et al. SARS-CoV-2 infection and persistence throughout the human body and brain // Nature. 2022. V. 612 (7941). P. 758–763. https://doi.org/10.1038/s41586-022-05542-y
- Sun J., Xiao J., Sunet R. et al. Prolonged persistence of SARS-CoV-2 RNA in body fluids // Emerg. Infect. Dis. 2020. V. 26. P. 1834–1838. https://doi.org/10.3201/eid2608.201097
- Tehrani H.A., Darnahal M., Nadji S.A., Haghighil S. COVID-19 re-infection or persistent infection in patient with acute myeloid leukaemia M3: a mini review // New Microb. New Infect. 2021. V. 39. P. 100830. https://doi.org/10.1016/j.nmni.2020.100830
- Welte T. SARS-CoV-2-triggered immune reaction: for COVID-19, nothing iIs as old as yesterday’s knowledge // Am. J. Respir. Crit. Care Med. 2021. V. 203 (2). P. 156. https://doi.org/10.1164/rccm.202011-4194ED
- Wirth K.J., Scheibenbogen C., Friedemann P. An attempt to explain the neurological symptoms of myalgic encephalomyelitis/chronic fatigue syndrome // J. Transl. Med. 2021. V. 19 (1). P. 471. https://doi.org/10.1186/s12967-021-03143-3
- Yong S.J., Liu S. Proposed subtypes of post-COVID-19 syndrome (or long-COVID) and their respective potential therapies // Rev. Med. Virol. 2021. V. 32 (4). P. e2315. https://doi.org/10.1002/rmv.2315
- Zhang J., Tecson K.M., McCullough P.A. Endothelial dysfunction contributes to COVID-19-associated vascular inflammation and coagulopathy // Rev. Cardiovasc. Med. 2020. V. 21 (3). P. 315–319. https://doi.org/10.31083/j.rcm.2020.03.12
Дополнительные файлы
 
				
			 
						 
						 
						 
					 
						 
									

 
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail 

