Солнечный витамин D3 – многоликий, загадочный, необходимый
- Авторы: Гомазков О.А.1
- 
							Учреждения: 
							- Научно-исследовательский институт биомедицинской химии им. В.Н. Ореховича
 
- Выпуск: Том 143, № 5 (2023)
- Страницы: 419-429
- Раздел: Статьи
- Статья получена: 02.02.2025
- Статья опубликована: 01.09.2023
- URL: https://cardiosomatics.ru/0042-1324/article/view/653230
- DOI: https://doi.org/10.31857/S0042132423050046
- EDN: https://elibrary.ru/SKOQKG
- ID: 653230
Цитировать
Полный текст
 Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Доступ платный или только для подписчиков
		                                							Доступ платный или только для подписчиков
		                                					Аннотация
Рассматривается значение витамина D3 для поддержания уровня здоровья в условиях острой респираторной и сосудистой патологии COVID-19. Физиологический дефицит витамина документируется как негативный прогноз подверженности влиянию вируса и тяжести заболевания. Многие клинические и экспериментальные исследования свидетельствуют, что витамин D3 выполняет функцию контроля гемоваскулярного гомеостаза – эндотелия сосудистой стенки, иммунологических реакций, свертывания и реологических свойств крови, системной гемодинамики и др. Многообразие эффектов определяется транскрипционной ролью рецептора витамина D3, экспрессирующего генные мишени синтеза функциональных белков. Рассматриваются возможности суплементации, поддержания уровня витамина D3 и его химических метаболитов, для профилактической и лечебной стратегии COVID-19.
Об авторах
О. А. Гомазков
Научно-исследовательский институт биомедицинской химии им. В.Н. Ореховича
							Автор, ответственный за переписку.
							Email: oleg-gomazkov@yandex.ru
				                					                																			                												                								Россия, Москва						
Список литературы
- Геринг Х., Кожухова С. Витамин D – гормон солнца. А если солнца недостаточно? // Биохимия. 2015. Т. 80 (1). С. 14–28.
- Гомазков О.А. Эндотелий – мишень, которую выбирает коронавирус. М.: ИКАР, 2021. 62 с.
- Гомазков О.А. Постковидный синдром. Патофизиология системных дисрегуляций // Успехи соврем. биол. 2023. Т. 143 (3). С. 229–238.
- Ионова Ж.И., Сергеева Е.Г., Беркович О.А. Генетические и эпигенетические факторы, регулирующие экспрессию и функционирование рецептора витамина D у больных ишемической болезнью сердца // Рос. кардиол. журн. 2021. Т. 26 (1S). С. 425.
- Салухов В.В., Ковалевская Е.А. Витамин D – стратегический удар по коронавирусной инфекции // Мед. Совет. 2020. Т. 21. С. 218–228. https://doi.org/10.21518/2079-701X-2020-21-218-228
- Adams J.S., Ren S., Liu P.T. et al. Vitamin D-directed rheostatic regulation of monocyte antibacterial responses // J. Immunol. 2009. V. 182. P. 4289–4295. https://doi.org/10.4049/jimmunol.0803736
- Ashique S., Gupta K., Gupta G. et al. Vitamin D – a prominent immunomodulator to prevent COVID-19 infection // Int. J. Rheum. Dis. 2023. V. 26 (1). P. 13–30. https://doi.org/10.1111/1756-185X.14477
- Argano C., Bocchio R.V., Natoli G. et al. Protective effect of vitamin D supplementation on COVID-19-related intensive care hospitalization and mortality: definitive evidence from meta-analysis and trial sequential analysis // Pharmaceuticals (Basel). 2023. V. 16 (1). P. 130. https://doi.org/10.3390/ph16010130
- Baeke F., Korf H., Overbergh L. et al. Human T lymphocytes are direct targets of 1,25-dihydroxyvitamin D3 in the immune system // J. Steroid. Biochem. Mol. Biol. 2010. V. 121 (1–2). P. 221–227.
- Barlow P.G., Svoboda P., Mackellar A. et al. Antiviral activity and increased host defense against influenza infection elicited by the human cathelicidin LL-37 // PLoS One. 2011. V. 6. P. e25333. https://doi.org/10.1371/journal.pone.0025333
- Barrea L., Verde L., Grant W.B. et al. Vitamin D: a role also in long COVID-19? // Nutrients. 2022. V. 14 (8). P. 1625. https://doi.org/10.3390/nu14081625
- Ben-Eltriki M. Hopefl R., Wright J.M. et al. Association between vitamin D status and risk of developing severe COVID-19 infection: a meta-analysis of observational studies // J. Am. Nutr. Assoc. 2022. V. 41 (7). P. 679–689. https://doi.org/10.1080/07315724.2021.1951891
- Bouillon R. Vitamin D status in Africa is worse than in other continents // Lancet Glob. Heal. 2020. V. 8. P. e20–e21.
- Briceno Noriega D., Savelkoul H.F.J. Vitamin D: a potential mitigation tool for the endemic stage of the COVID-19 pandemic? // Front Publ. Health. 2022. V. 10. P. 888168. https://doi.org/10.3389/fpubh.2022.888168
- Capozzi A., Scambia G., Lello S. et al. Calcium, vitamin D, vitamin K2, and magnesium supplementation and skeletal health // Maturitas. 2020. V. 140. P. 55–63. https://doi.org/10.1016/j.maturitas.2020.05.020
- Castillo M.E., Costa L.M., Barrios J.M. et al. Effect of calcifediol treatment and best available therapy versus best available therapy patients hospitalized for COVID-19: a pilot randomized clinical study // J. Steroid Biochem. Mol. Biol. 2020. V. 203. P. 105751. https://doi.org/10.1016/j.jsbmb.2020.105751
- Carlberg C. Molecular endocrinology of vitamin D on the epigenome level // Mol. Cell. Endocrinol. 2017. V. 453. P. 14–21.
- Chakkera M., Ravi N., Ramaraju R. et al. The efficacy of vitamin D supplementation in patients with Alzheimer’s disease in preventing cognitive decline: a systematic review // Cureus. 2022. V. 14 (11). P. e31710. https://doi.org/10.7759/cureus.31710
- Charoenngam N., Jaroenlapnopparat A., Mettler S.K. et al. Genetic variations of the vitamin D metabolic pathway and COVID-19 susceptibility and severity: current understanding and existing evidence // Biomedicines. 2023. V. 11 (2). P. 400. https://doi.org/10.3390/biomedicines11020400
- Cicero A.F.G., Fogacci F., Borghi C. Vitamin D supplementation and COVID-19 outcomes: mounting evidence and fewer doubts // Nutrients. 2022. V. 14 (17). P. 3584. https://doi.org/10.3390/nu14173584
- Chiodini I., Davide Gatti D., Soranna D. et al. Vitamin D status and SARS-CoV-2 infection and COVID-19 clinical outcomes // Front Publ. Health. 2021. V. 9. P. 736665. https://doi.org/10.3389/fpubh.2021.736665
- Dancer R.C.A., Parekh D., Lax S. et al. Vitamin D deficiency contributes directly to the acute respiratory distress syndrome // Thorax. 2015. V. 70. P. 617–624.
- Deluca H.F. History of the discovery of vitamin D and its active metabolites // Bonekey Rep. 2014. V. 3. P. 479. https://doi.org/10.1038/bonekey.2013.213
- Di Rosa M., Malaguarnera M., Nicoletti F. et al. Vitamin D3: a helpful immune-modulator // Immunology. 2011. V. 134 (2). P. 123–139. https://doi.org/10.1111/j.1365-2567.2011.03482.x
- Dissanayake H.A., de Silva N.L., Sumanatilleke M. et al. Prognostic and therapeutic role of vitamin D in COVID-19: systematic review and meta-analysis // J. Clin. Endocrinol. Metab. // 2022. V. 107 (5). P. 1484–1502. https://doi.org/10.1210/clinem/dgab892
- Durmuş M.E., Kara O., Kara M. et al. The relationship between vitamin D deficiency and mortality in older adults before and during COVID-19 // Heart Lung. 2023. V. 57. P. 117–123. https://doi.org/10.1016/j.hrtlng.2022.09.007
- Gholi Z., Yadegarynia D., Eini-Zinab H. et al. Vitamin D deficiency is associated with increased risk of delirium and mortality among critically ill, elderly Covid-19 patients // Complement. Ther. Med. 2022. V. 70. P. 102855. https://doi.org/10.1016/j.ctim.2022.102855
- Gibson C., Davis C., Zhu W. et al. Dietary vitamin D and its metabolites non-genomically stabilize the endothelium // PLoS One. 2015. V. 10. P. e0140370. https://doi.org/10.1371/journal.pone.0140370
- Giménez V.M., Sanz R.L., Marón F.J.M. et al. Vitamin D: RAAS connection: an integrative standpoint into cardiovascular and neuroinflammatory disorders // Curr. Prot. Pept. Sci. 2020. V. 21. P. 948–954. https://doi.org/10.2174/1389203721666200606220719
- Glinsky G.V. Vitamin D, quercetin, and estradiol manifest properties of medicinal agents for targeted mitigation of the COVID-19 pandemic defined by genomics-guided tracing of SARS-CoV-2 targets in human cells // Biomedicines. 2020. V. 8 (5). P. 129. https://doi.org/10.3390/biomedicines8050129
- Göring H. Vitamin D in nature: a product of synthesis and/or degradation of cell membrane components // Biochemistry (Mosc.). 2018. V. 83 (11). P. 1350–1357.
- Han L., Xu X.J., Zhang J.S., Liu H.M. Association between vitamin D deficiency and levels of renin and angiotensin in essential hypertension // Int. J. Clin. Pract. 2022. Art. 8975396. https://doi.org/10.1155/2022/8975396
- Hansdottir S., Monick M.M., Lovanet N. et al. Vitamin D decreases respiratory syncytial virus induction of NF-kappaB-linked chemokines and cytokines in airway epithelium while maintaining the antiviral state // J. Immunol. 2010. V. 184 (2). P. 965–974.
- Holick M.F. The one-hundred-year anniversary of the discovery of the sunshine vitamin D3: historical, personal experience and evidence-based perspectives // Nutrients. 2023. V. 15 (3). P. 593. https://doi.org/10.3390/nu15030593
- Hosseini B., El Abd A., Ducharme F. Effects of vitamin D supplementation on COVID-19 related outcomes: a systematic review and meta-analysis // Nutrients. 2022. V. 14. P. 2134. https://doi.org/10.3390/nu14102134
- Jablonski K.L., Chonchol M., Pierce G.L. et al. 25-Hydroxyvitamin D deficiency is associated with inflammation-linked vascular endothelial dysfunction in middle-aged and older adults // Hypertension. 2011. V. 57. P. 63–69.
- Jenei T., Jenei S., T. Tamás L. et al. COVID-19 mortality is associated with low vitamin D levels in patients with risk factors and/or advanced age // Clin. Nutr. ESPEN. 2022. V. 47. P. 410–413. https://doi.org/10.1016/j.clnesp.2021.11.025
- Jude E.B., Ling S.F., Allcock R. et al. Vitamin D deficiency is associated with higher hospitalization risk from COVID-19 // J. Clin. Endocrinol. Metab. 2021. V. 106 (11). P. e4708–e4715. /https://doi.org/10.1210/clinem/dgab439
- Khojah H.M.J., Ahmed S.A., Al-Thagfan S.S. et al. The impact of serum levels of vitamin D3 and its metabolites on the prognosis and disease severity of COVID-19 // Nutrients. 2022. V. 14 (24). P. 5329. https://doi.org/10.3390/nu14245329
- Kong J., Zhu X., Shi Y. et al. VDR attenuates acute lung injury by blocking Ang-2–Tie-2 pathway and rennin-angiotensin system // Mol. Endocrinol. 2013. V. 27. P. 2116–2125.
- Li Y.C., Kong J., Wei M. et al. 1,25-Dihydroxyvitamin D3 is a negative endocrine regulator of the renin-angiotensin system // J. Clin. Invest. 2002. V. 110. P. 229–238.
- Lin R., White J.H. The pleiotropic actions of vitamin D // BioEssays. 2004. V. 26. P. 21–28.
- Lin L., Zhang L., Li Ch. et al. Vitamin D and vitamin D receptor: new insights in the treatment of hypertension // Curr. Prot. Pept. Sci. 2019. V. 20 (10). P. 984–995. https://doi.org/10.2174/1389203720666190807130504
- Liu P.T., Stenger S., Li H. et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response // Science. 2006. V. 311. P. 1770–1773. https://doi.org/10.1126/science.1123933
- Malek Mahdavi A. A brief review of interplay between vitamin D and angiotensin-converting enzyme 2: implications for a potential treatment for COVID-19 // Rev. Med. Virol. 2020. V. 30 (5). P. e2119.
- McCollum E.V., Davis M. The necessity of certain lipins in the diet during growth // J. Biol. Chem. 1913. V. 15. P. 167–175.
- Oz F., Cizgici AY., Oflaz H. et al. Impact of vitamin D insufficiency on the epicardial coronary flow velocity and endothelial function // Coron. Artery Dis. 2013. V. 24 (5). P. 392–397. https://doi.org/10.1097/MCA.0b013e328362b2c8
- Pál É., Ungvári Z., Benyó Z., Várbíró S. Role of vitamin D deficiency in the pathogenesis of cardiovascular and cerebrovascular diseases // Nutrients. 2023. V. 15 (2). P. 334. https://doi.org/10.3390/nu15020334
- Pilz S., Verheyen N., Grübler M.R. et al. Vitamin D and cardiovascular disease prevention // Nat. Rev. Cardiol. 2016. V. 13 (7). P. 404–417. https://doi.org/10.1038/nrcardio.2016.73
- Quesada-Gomez J.M., Lopez-Miranda J., Entrenas-Castillo M. et al. Vitamin D endocrine system and COVID-19: treatment with calcifediol // Nutrients. 2022. V. 14 (13). P. 2716. https://doi.org/10.3390/nu14132716
- Renke G., Starling-Soares B., Thomaz Baesso T. et al. Effects of vitamin D on cardiovascular risk and oxidative stress // Nutrients. 2023. V. 15 (3). P. 769. https://doi.org/10.3390/nu15030769
- Shah K., Varna V.P., Sharma U. et al. Does vitamin D supplementation reduce COVID-19 severity?: a systematic review // QJM. 2022. V. 115 (10). P. 665–672. https://doi.org/10.1093/qjmed/hcac040
- Simpson R.U., Hershey S.H., Nibbelink K.A. Characterization of heart size and blood pressure in the vitamin D receptor knockout mouse // J. Steroid. Biochem. 2007. Mol. Biol. V. 103. P. 521–24. https://doi.org/10.1016/j.jsbmb.2006.12.098
- Soltani-Zangbar M.S., Mahmoodpoor A., Dolati S. et al. Serum levels of vitamin D and immune system function in patients with COVID-19 admitted to intensive care unit // Gene Rep. 2022. V. 26. P. 101509.https://doi.org/10.1016/j.genrep.2022.101509
- Tang J. COVID-19 Pandemic and osteoporosis in elderly patients // Aging Dis. 2022. V. 13. P. 960–969.
- Thickett D.R., Moromizato T., Litonjua A.A. et al. Association between prehospital vitamin D status and incident acute respiratory failure in critically ill patients: a retrospective cohort study // BMJ Open Respir. Res. 2015. V. 2. P. 1–8. https://doi.org/10.1136/bmjresp-2014-000074
- Tishkoff D.X., Nibbelink K.A., Holmberg K.H. et al. Functional vitamin D receptor (VDR) in the t-tubules of cardiac myocytes: VDR knockout cardiomyocyte contractility // Endocrinology. 2008. V. 149. P. 558–564.
- White J.H. Emerging roles of vitamin D-induced antimicrobial peptides in antiviral innate immunity // Nutrients. 2022. V. 14 (2). P. 284. https://doi.org/10.3390/nu14020284
- Wong M.S., Delansorne R., Man R.Y. et al. Vitamin D derivatives acutely reduce endothelium-dependent contractions in the aorta of the spontaneously hypertensive rat // Am. J. Physiol. Heart Circ. Physiol. 2008. V. 295. P. H289–H296.
- Xu Y., Baylink D.J., Chen C.-S. et al. The importance of vitamin D metabolism as a potential prophylactic, immunoregulatory and neuroprotective treatment for COVID-19 // J. Transl. Med. 2020. V. 18 (1). P. 322. https://doi.org/10.1186/s12967-020-02488-5
Дополнительные файлы
 
				
			 
						 
						 
						 
					 
						 
									

 
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail 




