Опсины и их тестирование в гетерологических экспрессионных системах
- Авторы: Чилигина Ю.А.1
- 
							Учреждения: 
							- Институт эволюционной физиологии и биохимии им. И.М. Сеченова РАН
 
- Выпуск: Том 144, № 6 (2024)
- Страницы: 635-649
- Раздел: Статьи
- Статья получена: 30.05.2025
- Статья опубликована: 15.12.2024
- URL: https://cardiosomatics.ru/0042-1324/article/view/681430
- DOI: https://doi.org/10.31857/S0042132424060032
- EDN: https://elibrary.ru/NRVIEQ
- ID: 681430
Цитировать
Полный текст
 Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Доступ платный или только для подписчиков
		                                							Доступ платный или только для подписчиков
		                                					Аннотация
Светочувствительные белки являются потенциальными оптогенетическими инструментами для восстановления зрительных функций при дегенерации фоторецепторов в сетчатке. Детальное исследование их свойств в гетерологических экспрессионных системах является необходимым этапом, предшествующим экспериментам на животных. Рассматриваются особенности опсинов и факторы, влияющие на их активность в модельных клеточных системах. Особое внимание уделяется опсинам, сопряженным с G-белками, как перспективным инструментам для воссоздания сигнальных каскадных механизмов ON-биполярных клеток сетчатки. Анализируются светоуправляемые сигнальные пути, активируемые натуральными или химерными опсинами, открывающие калиевые каналы внутреннего выпрямления (GIRKs), а также возможная модуляция внутриклеточной сигнализации, опосредованная G-белками. Показано, что сравнение характеристик световой стимуляции (спектральный диапазон, интенсивность, длительность, частота) с полученными фотобиологическими ответами клеток (амплитуда канальных токов, кинетика активации и деактивации каналов) в тестовой экспрессионной гетерологической системе позволяет отбирать лучших кандидатов среди светочувствительных белков, перспективных в генной терапии.
Полный текст
 
												
	                        Об авторах
Ю. А. Чилигина
Институт эволюционной физиологии и биохимии им. И.М. Сеченова РАН
							Автор, ответственный за переписку.
							Email: julchil@mail.ru
				                					                																			                												                	Россия, 							Санкт-Петербург						
Список литературы
- Долгих Д.А., Малышев А.Ю., Саложин С.В. Анионный канальный родопсин, экспрессированный в культуре нейронов и in vivo в мозге мыши: светоиндуцированное подавление генерации потенциалов действия // ДАН. 2015. Т. 465 (6). С. 737–740.
- Карпушев А.В., Чилигина Ю.А. Электрофизиологическое тестирование активации G-белок-зависимого сигнального каскада светочувствительными химерными рецепторами // Мат. III Всерос. науч. конф. с междунар. уч. “Оптогенетика+ 2023” (СПб., 6–8 апреля 2023 г.). СПб.: ИЭФБ, 2023. С. 48–49.
- Кирпичников М.П., Островский М.А. Оптогенетика и зрение // Вестн. РАН. 2019. Т. 89 (2). С. 125–30.
- Колесов Д.В., Соколинская Е.Л., Лукьянов К.А., Богданов А.М. Молекулярные инструменты направленного контроля электрической активности нервных клеток. Ч. I // Acta Naturae. 2021. Т. 13 (3). С. 52–64.
- Островский М.А. Молекулярная физиология зрительного пигмента родопсина: актуальные направления // Рос. физиол. журн. им. И.М. Сеченова. 2020. Т. 106 (4). С. 401–420.
- Петровская Л.Е., Рощин М.В., Смирнова Г.Р. и др. Бицистронная генетическая конструкция для оптогенетического протезирования рецептивного поля ганглиозной клетки дегенеративной сетчатки // ДАН. 2019. Т. 486. С. 258–261.
- Airan R.D., Thompson K.R., Fenno L.E. et al. Temporally precise in vivo control of intracellular signaling // Lett. Nat. 2009. V. 458. P. 1025–1029.
- Arshavsky V., Burns M. Current understanding of signal amplification in phototransduction // Cell. Logist. 2014. V. 4 (2). P. e28680. https://doi.org/10.4161/cl.29390
- Bailes H., Lucas R. Human melanopsin forms a pigment maximally sensitive to blue light (λmax ≈ 479 nm) supporting activation of Gq/11 and Gi/o signalling cascades // Proc. Biol. Sci. 2013. V. 280. P. 20122987. http://doi.org/10.1098/rspb.2012.2987
- Baker C., Flannery J. Innovative optogenetic strategies for vision restoration // Front. Cell. Neurosci. 2018. V. 12. P. 316. https://doi.org/10.3389/fncel.2018.00316
- Ballister E.R., Rodgers J., Martial F., Lucas R.J. A live cell assay of GPCR coupling allows identification of optogenetic tools for controlling Go and Gi signaling // BMC Biol. 2018. V. 16. P. 10. https://doi.org/10.1186/s12915-017-0475-2
- Berry M.H., Holt A., Salari A. et al. Restoration of high-sensitivity and adapting vision with a cone opsin // Nat. Com. 2019. V. 10. P. 1221. https://doi.org/10.1038/s41467-019-09124-x
- Bi A., Cui J., Ma Yu-P. et al. Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration // Neuron. 2006. V. 50. P. 23–33. https://doi.org/10.1016/j.neuron.2006.02.026
- Bird A.C. Clinical investigation of retinitis pigmentosa // Aust. N. Z. J. Ophthalmol. 1988. V. 16. P. 189–198.
- Blasic J.R.Jr., Brown L.R., Robinson Ph.R. Light-dependent phosphorylation of the carboxy tail of mouse melanopsin // Cell. Mol. Life Sci. 2012. V. 69 (9). P. 1551–1562. https://doi.org/10.1007/s00018-011-0891-3
- Boyden E., Zhang F., Bamberg E. et al. Millisecond-timescale, genetically targeted optical control of neural activity // Nat. Neurosci. 2005. V. 8. P. 1263–1268. http://dx.doi.org/10.1038/nn1525
- Bünemann M., Bucheler M.M., Philipp M. et al. Activation and deactivation kinetics of alpha 2A- and alpha 2C-adrenergic receptor-activated G protein-activated inwardly rectifying K+ channel currents // J. Biol. Chem. 2001. V. 276. P. 47512–47517. https://doi.org/10.1074/jbc.m108652200
- Cehajic-Kapetanovic J., Eleftheriou C., Allen A.E. et al. Restoration of vision with ectopic expression of human rod opsin // Curr. Biol. 2015. V. 25. P. 2111–2122. https://doi.org/10.1016%2Fj.cub.2015.07.029
- Covington H.E., Lobo M.K., Maze I. et al. Antidepressant effect of optogenetic stimulation of the medial prefrontal cortex // J. Neurosci. 2010. V. 30 (48). P. 16082–16090. https://doi.org/10.1523%2FJNEUROSCI.1731-10.2010
- Deisseroth K., Feng G., Majewska A. et al. Next-generation optical technologies for illuminating genetically targeted brain circuits // J. Neurosci. 2006. V. 26 (41). P. 10380–10386. https://doi.org/10.1523/jneurosci.3863-06.2006
- Deisseroth K. Optogenetics // Nat. Methods. 2011. V. 8 (1). P. 26–29. https://doi.org/10.1038/nmeth.f.324
- Deisseroth K. Optogenetics: 10 years of microbial opsins in neuroscience // Nat. Neurosci. 2015. V. 8 (9). P. 1213–1225. https://doi.org/10.1038/nn.4091
- Dhingra A., Vardi N. “mGlu receptors in the retina” — WIREs membrane transport and signaling // Wiley Interdiscip. Rev. Membr. Transp. Signal. 2012. V. 1 (5). P. 641–653. https://doi.org/10.1002/wmts.43
- Doroudchi M., Greenberg K., Liu J. et al. Virally delivered channelrhodopsin-2 safely and effectively restores visual function in multiple mouse models of blindness // Mol. Ther. 2011. V. 19. P. 1220–1229. https://doi.org/10.1038/mt.2011.69
- Firsov M.L. Perspective for the optogenetic prosthetization of the retina // Neurosci. Behav. Physi. 2019. V. 49. P. 192–198. https://doi.org/10.1007/s11055-019-00714-2
- Flock T., Hauser A., Lund N. et al. Selectivity determinants of GPCR-G-protein binding // Nature. 2017. V. 545 (7654). P. 317–322. https://doi.org/10.1038/nature22070
- Ganjawala T.H., Lu Q., Fenner M.D. et al. Improved CoChR variants restore visual acuity and contrast sensitivity in a mouse model of blindness under ambient light conditions // Mol. Ther. 2019. V. 27 (6). P. 1195–1205. https://doi.org/10.1016/j.ymthe.2019.04.002
- Gaub B.M., Berry M.H., Holt A.E. et al. Restoration of visual function by expression of a light-gated mammalian ion channel in retinal ganglion cells or ON-bipolar cells // PNAS USA. 2014. V. 111 (51). P. E5574–83.
- Govorunova E.G., Sineshchekov O.A., Janz R. et al. Natural light-gated anion channels: a family of microbial rhodopsins for advanced optogenetics // Science. 2015. V. 349 (6248). P. 647–650. https://doi.org/10.1126/science.aaa7484
- Graham F.L., Russell W.C., Smiley J. et al. Characteristics of a human cell line transformed by DNA from human adenovirus type 5 // J. Gen. Virol. 1977. V. 36. P. 59–72. https://doi.org/10.1099/0022-1317-36-1-59
- Guido M.E., Marchese N.A., Rios M.N. et al. Non-visual opsins and novel photo-detectors in the vertebrate inner retina mediate light responses within the blue spectrum region // Cell. Mol. Neurobiol. 2022. V. 42 (1). P. 59–83. https://doi.org/10.1007/s10571-020-00997-x
- Hofmann K.P., Lamb T.D. Rhodopsin, light-sensor of vision // Prog. Retin. Eye Res. 2022. V. 93. P. 101116. http://dx.doi.org/10.1016/j.preteyeres.2022.101116
- Hommers L.G., Lohse M.J., Bünemann M. Regulation of the inward rectifying properties of G-protein-activated inwardly rectifying K+ (GIRK) channels by Gβγ subunits // J. Biol. Chem. 2003. V. 278 (2). P. 1037–1043. https://doi.org/10.1074/jbc.m205325200
- Kato M., Sugiyama T., Sakai K. et al. Two opsin 3-related proteins in the chicken retina and brain: a TMT-type opsin 3 is a blue-light sensor in retinal horizontal cells, hypothalamus, and cerebellum // PLoS One. 2016. V. 11 (11). P. e0163925. https://doi.org/10.1371%2Fjournal.pone.0163925
- Kim J.-M., Hwa J., Garriga P. Light-driven activation of beta 2-adrenergic receptor signaling by a chimeric rhodopsin containing the beta 2-adrenergic receptor cytoplasmic loops // Biochemistry. 2005. V. 44. P. 2284–2292. https://doi.org/10.1021/bi048328i
- Kim C.K., Adhikari A., Deisseroth K. Integration of optogenetics with complementary methodologies in systems neuroscience // Nat. Rev. Neurosci. 2017. V. 18 (4). P. 222–235. https://doi.org/10.1038/nrn.2017.15
- Kleinlogel S. Optogenetic user’s guide to opto-GPCRs // Front. Biosci. 2016. V. 21. P. 794–805. https://doi.org/10.2741/4421
- Koyanagi M., Terakita A. Diversity of animal opsin-based pigments and their optogenetic potential // Biochim. Biophys. Acta. 2014. V. 1837. P. 710–716. http://dx.doi.org/10.1016/j.bbabio.2013.09.003
- Kralik J., Wyk M., Stocker N., Kleinlogel S. Bipolar cell targeted optogenetic gene therapy restores parallel retinal signaling and high-level vision in the degenerated retina // Comm. Biol. 2022. V. 5. P. 1116. https://doi.org/10.1038/s42003-022-04016-1
- Lagali P., Balya D., Awatramani G. et al. Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration // Nat. Neurosci. 2008. V. 11. P. 667–675. https://doi.org/10.1038/nn.2117
- Lamb T.D. Photoreceptor physiology and evolution: cellular and molecular basis of rod and cone phototransduction // J. Physiol. 2022. V. 600 (21). P. 4585–4601.
- Law S., Yasuda K., Bell G., Reisine T. Gi alpha 3 and G(o) alpha selectively associate with the cloned somatostatin receptor subtype SSTR2 // J. Biol. Chem. 1993. V. 268. P. 10721–10727.
- Lei Q., Jones M.B., Talley E.M. et al. Activation and inhibition of G protein coupled inwardly rectifying potassium (Kir3) channels by G protein βγ subunits // PNAS USA. 2000. V. 97. P. 9771—9776. https://doi.org/10.1073%2Fpnas.97.17.9771
- Leemann S., Kleinlogel S. Functional optimization of light-activatable opto-GPCRs: illuminating the importance of the proximal C-terminus in G-protein specificity // Front. Cell Dev. Biol. 2023. V. 11. P. 1053022. https://doi.org/10.3389/fcell.2023.1053022
- Levitz J., Pantoja C., Gaub B. et al. Optical control of metabotropic glutamate receptors // Nat. Neurosci. 2013. V. 16. P. 507–516. https://doi.org/10.1038/nn.3346
- Lin J.Y., Lin M.Z., Steinbach P., Tsien R.Y. Characterization of engineered channelrhodopsin variants with improved properties and kinetics // Biophys. J. 2009. V. 96 (5). P. 1803–1814. https://doi.org/10.1016%2Fj.bpj.2008.11.034
- Lin J.Y. A user’s guide to channelrhodopsin variants: features, limitations and future developments // Exp. Physiol. 2011. V. 96. P. 19–25. https://doi.org/10.1113%2Fexpphysiol.2009.051961
- Mathes T. Natural resources for optogenetic tools // Optogenetics / Ed. A. Kianianmomeni. N.Y.: Springer, 2016. P. 19–36.
- Masseck O., Spoida K. Dalkara D. et al. Vertebrate cone opsins enable sustained and highly sensitive rapid control of Gi/o signaling in anxiety circuitry // Neuron. 2014. V. 81. P. 1263–1273. https://doi.org/10.1016/j.neuron.2014.01.041
- Masuho I., Ostrovskaya O., Kramer G. Distinct profiles of functional discrimination among G proteins determine the actions of G protein-coupled receptors // Sci. Signal. 2015. V. 8 (405). P. ra123. https://doi.org/10.1126/scisignal.aab4068
- Milligan G., Kostenis E. Heterotrimeric G-proteins: a short history // Br. J. Pharmacol. 2006. V. 147 (1). P. S46–S55. https://doi.org/10.1038/sj.bjp.0706405
- Nagata T., Koyanagi M., Lucas R., Terakita A. An all-trans-retinal-binding opsin peropsin as a potential dark-active and light-inactivated G protein-coupled receptor // Sci. Rep. 2018. V. 8 (3535). P. 1–7. https://doi.org/10.1038/s41598-018-21946-1
- Nagel G., Mockel B., Buldt G., Bamberg E. Functional expression of bacteriorhodopsin in oocytes allows direct measurement of voltage dependence of light induced H+ pumping // FEBS Lett. 1995. V. 377. P. 263–266. https://doi.org/10.1016/0014-5793(95)01356-3
- Nagel G., Ollig D., Fuhrmann M. et al. Channelrhodopsin-1: a light-gated proton channel in green algae // Science. 2002. V. 296 (5577). P. 2395–2398. https://doi.org/10.1126/science.1072068
- Nagel G., Szellas T., Huhn W. et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel // PNAS USA. 2003. V. 100 (24). P. 940–945. https://doi.org/10.1073/pnas.1936192100
- Neves S.R., Ram P.T., Iyengar R. G-protein pathways // Science. 2002. V. 296 (5573). P. 1636–1639. https://doi.org/10.1126/science.1071550
- Oh E., Maejima T., Liu C. et al. Substitution of 5-HT1A receptor signaling by a light-activated G protein-coupled receptor // J. Biol. Chem. 2010. V. 285 (40). P. 30825–30836. https://doi.org/10.1074/jbc.m110.147298
- Pugh E.N., Lamb T.D. Phototransduction in vertebrate rods and cones: molecular mechanisms of amplification, recovery and light adaptation. Ch. 5 // Handbook of biological physics / Eds D.G. Stavenga, W.J. DeGrip, E.N. Pugh Jr. North-Holland, 2000. V. 3. P. 183–255.
- Riggsbee C.W., Deiters A. Recent advances in the photochemical control of protein function // Trends Biotechnol. 2010. V. 28 (9). P. 468–475. https://doi.org/10.1016/j.tibtech.2010.06.001
- Rosenbaum D.M., Rasmussen S.G., Kobilka B.K. The structure and function of G-protein-coupled receptors // Nature. 2009. V. 459 (7245). P. 356–363. https://doi.org/10.1038/nature08144
- Rost B.R., Schneider-Warme F., Schmitz D., Hegemann P. Optogenetic tools for subcellular applications in neuroscience // Neuron. 2017. V. 96 (3). P. 572–603. https://doi.org/10.1016/j.neuron.2017.09.047
- Sahel J.-A., Boulanger-Scemama E., Pagot Ch. et al. Partial recovery of visual function in a blind patient after optogenetic therapy // Nat. Med. 2021. V. 27. P. 1223–1229. https://doi.org/10.1038/s41591-021-01351-4
- Skylar M.S., Bruchas M.R. Optogenetic approaches for dissecting neuromodulation and GPCR signaling in neural circuits // Curr. Opin. Pharmacol. 2017. V. 32. P. 56–70. https://doi.org/10.1016/j.coph.2016.11.001
- Spoida K. Melanopsin variants as intrinsic optogenetic on and off switches for transient versus sustained activation of G protein pathways // Curr. Biol. 2016. V. 26. P. 1206–1212. https://doi.org/10.1016/j.cub.2016.03.007
- Stenkamp R.E., Filipek S., Driessen C.A. et al. Crystal structure of rhodopsin: a template for cone visual pigments and other G protein-coupled receptors // Biochim. Biophys. Acta. 2002. V. 1565 (2). P. 168–182. https://doi.org/10.1016/S0005-2736(02)00567-9
- Terakita A. The opsins // Genome Biol. 2005. V. 6 (3). P. 213. https://doi.org/10.1186/gb-2005-6-3-213
- Tian L., Kammermeier P.J. G protein coupling profile of mGluR6 and expression of G alpha proteins in retinal ON bipolar cells // Vis. Neurosci. 2006. V. 23 (6). P. 909–916. https://doi.org/10.1017/s0952523806230268
- Thomas P., Smart T.G. HEK293 cell line: a vehicle for the expression of recombinant proteins // J. Pharmacol. Toxicol. Meth. 2005. V. 51. P. 187—200. http://dx.doi.org/10.1016/j.vascn.2004.08.014
- Tomita H., Sugano E., Murayama N. et al. Restoration of the majority of the visual spectrum by using modified Volvox channelrhodopsin-1 // Mol. Ther. 2014. V. 22. P. 1434–1440. https://doi.org/10.1038/mt.2014.81
- Tye K.M., Deisseroth K. Optogenetic investigation of neural circuits underlying brain disease in animal models // Nat. Rev. Neurosci. 2012. V. 13 (4). P. 251–266. https://doi.org/10.1038/nrn3171
- Watanabe Y., Sugano E., Tabata К. et al. Development of an optogenetic gene sensitive to daylight and its implications in vision restoration // Regen. Med. 2021. V. 6 (1). P. 64. https://doi.org/10.1038/s41536-021-00177-5
- Wert K., Lin J.H., Tsang S.H. General pathophysiology in retinal degeneration // Dev. Ophtalmol. 2014. V. 53. P. 33–43. https://doi.org/10.1159%2F000357294
- Wu K., Kulbay M., Toameh D et al. Retinitis pigmentosa: novel therapeutic targets and drug development // Pharmaceutics. 2023. V. 15 (2). P. 685. https://doi.org/10.3390/pharmaceutics15020685
- Wyk M., Kleinlogel S.A. A visual opsin from jellyfish enables precise temporal control of G protein signaling // Nat. Comm. 2023. V. 14 (1). P. 2450. https://doi.org/10.21203/rs.3.rs-1723578/v1
- Wyk M., Pielecka-Fortuna J., Löwel S., Kleinlogel S. Restoring the on switch in blind retinas: opto-mGluR6, a next-generation, cell tailored optogenetic tool // PLoS Biol. 2015. V. 13 (5). P. e1002143. https://doi.org/10.1371/journal.pbio.1002143
- Xu Y., Orlandi C., Cao Y. et al. The TRPM1 channel in ON-bipolar cells is gated by both the α and the βγ subunits of the G-protein Go // Sci. Rep. 2016. V. 6. P. 20940.
- Yizhar O., Fenno L.E., Prigge M. et al. Neocortical excitation/inhibition balance in information processing and social dysfunction // Nature. 2011. V. 477. P. 172–178. https://doi.org/10.1038/nature10360
Дополнительные файлы
 
				
			 
						 
						 
						 
					 
						 
									

 
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail 



