The morphological and genetic diversity of the caspian anadromous shad, Alosa kessleri kessleri (Alosidae) from the Akhtuba River (Lower Volga region) in the current time period. To the question of the intraspecies structure

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The paper presents data on variability of morphological and population-genetic features of the Caspian anadromous shad Alosa kessleri kessleri from the Akhtuba River for three years in a row (2020–2022). Studies of the ichthyoplankton samples for the first time reveal that the spawning of the Caspian anadromous shad occurs in the middle reach of the Akhtuba River, at a distance of 180–290 km from the upper boundary of the Volga Delta. The studied species is characterized by stable values of body length and weight, sex ratio, and morphological features in the samples. A low level of its genetic variability has been established by nuclear markers of microsatellite loci and the COI gene. Nine haplotypes have been identified in the Cyt b gene, two of which differ significantly from the others. In general, the Caspian anadromous shad is characterized by high haplotype diversity in combination with low values of nucleotide diversity. The obtained results are descriptive and can be regarded as the initial stage (hypothesis development and discussion) of studying the structure of the Caspian anadromous shad in the Lower Volga Basin.

Full Text

Restricted Access

About the authors

K. V. Kuzishchin

Lomonosov Moscow State University; Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences

Author for correspondence.
Email: KK_office@mail.ru
Russian Federation, Moscow; Moscow

M. А. Gruzdeva

Lomonosov Moscow State University

Email: KK_office@mail.ru
Russian Federation, Moscow

A. V. Semenova

Lomonosov Moscow State University

Email: KK_office@mail.ru
Russian Federation, Moscow

F. A. Fedotov

Lomonosov Moscow State University; Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences

Email: KK_office@mail.ru
Russian Federation, Moscow; Moscow

A. M. Shadrin

Lomonosov Moscow State University

Email: KK_office@mail.ru
Russian Federation, Moscow

References

  1. Барабанов В.В., Ижерская В.А. 2020. Оценка состояния пресноводной ихтиофауны Волго-Ахтубинской поймы на современном этапе (в 2018-2019 гг.) // Вестн. АГТУ. Сер. Рыб. хоз-во. № 2. С. 52–58. https://doi.org/10.24143/2073-5529-2020-2-52-58
  2. Берг Л.С. 1948. Рыбы пресных вод СССР и сопредельных стран. Т. 1. М.; Л.: Изд-во АН СССР, 466 с.
  3. Брагинская Р.Я. 1957. К вопросу о развитии черноспинки и волжской сельди // Тр. ИМЖ АН СССР. Вып. 16. С. 171–180.
  4. Васильева Е.Д., Лужняк В.А. 2013. Рыбы бассейна Азовского моря. Ростов н/Д.: Изд-во ЮНЦ РАН, 272 с.
  5. Водовская В.В. 1967. Ход и нерест каспийской проходной сельди (Alosa kessleri) на Волге в 1964 г. // Тр. КаспНИРХ. Т. 23. С. 95–108.
  6. Водовская В.В. 1974. Новые данные о внутривидовых формах каспийской проходной сельди (Alosa kessleri) // Тр. ВНИРО. Т. 101. С. 74–82.
  7. Водовская В.В. 1998. Проходная сельдь // Научные основы устойчивого рыболовства и регионального распределения промысловых объектов Каспийского моря. М.: Изд-во ВНИРО. С. 59–63.
  8. Водовская В.В. 2001. Проходная сельдь (Alosa kessleri Grimm) Каспия: запасы и перспективы промыслового использования // Состояние запасов промысловых объектов на Каспии и их использование. Астрахань: Изд-во КаспНИРХ. С. 246–252.
  9. Войнова Т.В. 2012. Современное состояние нерестовой части популяции проходной сельди-черноспинки Alosa kessleri kessleri // Матер. IV Междунар. науч.-практ. конф. “Экологический мониторинг и биоразнообразие”. Ишим: Изд-во ИГПИ. С. 75–78.
  10. Войнова Т.В. 2013. Динамика уловов и биологические показатели сельди-черноспинки в Волго-Каспийском рыбохозяйственном подрайоне в современных условиях (река Волга и ее водотоки) // Вестн. АГТУ. Сер. Рыб. хоз-во. № 3. С. 25–29.
  11. Войнова Т.В. 2016. Мониторинг современного состояния популяции сельди-черноспинки (Alosa kesselri kessleri Grimm) в р. Волге // Экол. мониторинг и биоразнообразие. № 1. С. 21–25.
  12. Воронина Е.А., Дьякова С.А., Попова О.В., Попова Э.С. 2023. Комплексная оценка состояния проходной сельди-черноспинки (Alosa kessleri, Grimm, 1887) в низовьях Волги // Рос. паразитол. журн. Т. 17. № 3. С. 340–351. https://doi.org/10.31016/1998-8435-2023-17-3-340-351
  13. Зубкова Т.С., Разинков В.П. 2022. Морские мигрирующие сельди Каспийского моря // Вопр. рыболовства. Т. 23. № 2. С. 51–62. https://doi.org/10.36038/0234-2774-2022-23-2-51-62
  14. Казанчеев Е.Н. 1981. Рыбы Каспийского моря. М.: Лег. и пищ. пром-сть, 168 с.
  15. Ким А.И. 2012. О восстановлении урало-каспийской популяции сельди Alosa kessleri kessleri // Вестн. КазНУ. Сер. Экол. № 1 (33). С. 79–81.
  16. Красная книга Российской Федерации. Животные. 2021. М.: Изд-во ВНИИ Экология, 1128 с.
  17. Крыжановский С.Г. 1956. Материалы по развитию сельдевых рыб // Тр. ИМЖ АН СССР. Вып. 17. 255 с.
  18. Кузищин К.В., Груздева М.А., Филенко В.А., Павлов Д.С. 2020. Сельдь-черноспинка Alosa kessleri kessleri (Grimm, 1887) из р. Ахтубы Нижневолжского бассейна: биологические и морфологические особенности // Биология внутр. вод. № 1. С. 67–75. https://doi.org/10.31857/S0320965220010143
  19. Лакин Г.Ф. 1990. Биометрия. М.: Высш. шк., 352 c.
  20. Макарова Е.Г., Козлова Н.В., Барегамян М.А., Войнова Т.В. 2019. Генетические исследования проходной сельди Волжско-Каспийского рыбохозяйственного бассейна // Вестн. АГТУ. Сер. Рыб. хоз-во. № 4. С. 116–123. https://doi.org/10.24143/2073-5529-2019-4-116-123
  21. Николаев В.А. 1962. Геологическая история, рельеф и аллювиальные отложения р. Ахтуба // Природа и сельское хозяйство Волго-Ахтубинской долины и дельты. М.: Изд-во МГУ. С. 11–56.
  22. Орлова С.Ю., Емельянова О.Р., Небесихина Н.А. и др. 2024. Проблемы ДНК-штрихкодирования пузанковых сельдей рода Alosa (Alosidae) Понто-Каспийского бассейна // Вопр. ихтиологии. Т. 64. № 3. С. 363–376. https://doi.org/10.31857/S0042875224030101
  23. Пичугин М.Ю. 2009. Развитие элементов скелета у молоди карликовой и мелкой симпатрических форм Salvelinus alpinus complex из озера Даватчан (Забайкалье) // Там же. Т. 49. № 6. С. 763–780.
  24. Правдин И.Ф. 1966. Руководство по изучению рыб. М.: Пищ. пром-сть, 376 c.
  25. Пятикопова О.В. 2019. Современные особенности нерестовой миграции производителей и покатной миграции личинок сельди-черноспинки (Alosa kessleri kessleri (Grimm, 1887)) в Волжско-Каспийском бассейне: Автореф. дис. … канд. биол. наук. Астрахань: АГТУ, 19 c.
  26. Решетников Ю.С., Попова О.А. 2015. О методиках полевых ихтиологических исследований и точности полученных результатов // Тр. ВНИРО. Т. 156. С. 114–131.
  27. Решетников Ю.С., Терещенко В.Г. 2017. Количественный уровень исследования в экологии рыб и ошибки, связанные с ним // Экология. № 3. С. 178–185. https://doi.org/10.7868/80367059717030143
  28. Световидов А.Н. 1952. Фауна СССР. Рыбы. Т. 2. Вып. 1. Сельдевые (Clupeidae). М.; Л.: Изд-во АН СССР, 331 c.
  29. Фомичев О.А., Тарадина Д.Г. 2006. Оценка численности покатной молоди полупроходных и речных рыб в водоемах дельты Волги // Матер. Междунар. конф. “Современное состояние и пути совершенствования научных исследований в Каспийском бассейне”. Астрахань: Изд-во КаспНИРХ. С. 233–236.
  30. Чугунова Н.И. 1959. Руководство по изучению возраста и роста рыб. М.: Изд-во АН СССР, 164 c.
  31. Aladin N.V., Chida T., Chuikov Y.S. et al. 2018. The history and future of the biological resources of the Caspian and the Aral Seas // J. Oceanol. Limnol. V. 36. № 6. P. 2061–2084. https://doi.org/10.1007/s00343-018-8189-z
  32. Alavi-Yeganeh M.S., Razavi S. 2016. Morphological variation and taxonomic validation of gill raker characteristics in Caspian marine shad (Clupeidae: Alosa braschnikowi) // J. Aquat. Ecol. V. 5. № 4. P. 122–127.
  33. Alexandrino P., Faria R., Linhares D. et al. 2006. Interspecific differentiation and intraspecific substructure in two closely related clupeids with extensive hybridization, Alosa alosa and Alosa fallax // J. Fish Biol. V. 69. P. 242–259. https://doi.org/10.1111/j.1095-8649.2006.01289.x
  34. Azizov A., Suleymanov S., Salavatian M. 2015. The features of the feeding of Caspian marine shad, Alosa braschnikowii (Borodin, 1904) in western part of the Caspian Sea // Casp. J. Environ. Sci. V. 13. № 1. P. 77–83.
  35. Baglinière J.L., Sabatie M.R., Rochard P.J. et al. 2003. The allis shad Alosa alosa: biology, ecology, range, and status of populations // Am. Fish. Soc. Symp. V. 35. P. 85–102.
  36. Balik İ. 2019. Population parameters of the pontic shad, Alosa immaculata Bennett, 1835 in the Fatsa coast of the south-eastern Black Sea // Ege J. Fish. Aquat. Sci. V. 36. № 4. P. 319–324. https://doi.org/10.12714/egejfas.36.4.01
  37. Bani A., Khataminejad S., Vaziri H.R., Haseli M. 2019. The taxonomy of Alosa caspia (Clupeidae: Alosinae), using molecular and morphometric specifications, in the South Caspian Sea // Eur. Zool. J. V. 86. № 1. P. 156–172. https://doi.org/10.1080/24750263.2018.1559366
  38. Barreto R.E., Gontijo A.M.M.C., Alves-de-Lima R.O. et al. 2007. MS222 does not induce primary DNA damage in fish // Aquac. Int. V. 15. № 2. P. 163–168. https://doi.org/10.1007/s10499-007-9073-6
  39. Bowen B.R., Kreiser B.R., Mickle P.F. et al. 2008. Phylogenetic relationships among North American Alosa species (Clupeidae) // J. Fish Biol. V. 72. № 5. P. 1188–1201. https://doi.org/10.1111/j.1095-8649.2007.01785.x
  40. Carter K.M., Woodley C.M., Brown R.S. 2010. A review of tricaine methanesulfonate for anesthesia of fish // Rev. Fish Biol. Fish. V. 21. № 1. P. 51–59. http://doi.org/10.1007/s11160-010-9188-0
  41. Chiesa S., Lucentini L., Piccinini A. et al. 2014. First molecular characterization of twaite shad Alosa fallax (Lacepede, 1803) from Italian populations based on Cytochrome b gene sequencing // Ital. J. Freshw. Ichthyol. V. 1. № 1. P. 9–18.
  42. Coad B.W. 2017. Review of the herrings of Iran (Family Clupeidae) // Int. J. Aquat. Biol. V. 5. № 3. P. 128–192. https://doi.org/10.22034/ijab.v5i3.282
  43. Cole T.L., Hammer M.P., Unmack P.J. et al. 2016. Range-wide fragmentation in a threatened fish associated with post-European settlement modification in the Murray–Darling Basin, Australia // Conserv. Genet. V. 17. № 6. P. 1377–1391. https://doi.org/10.1007/s10592-016-0868-8
  44. Conix S. 2018. Integrative taxonomy and the operationalization of evolutionary independence // Eur. J. Phil. Sci. V. 8. № 3. P. 587–603. https://doi.org/10.1007/s13194-018-0202-z
  45. Daglio L.G., Dawson M.N. 2019. Integrative taxonomy: ghosts of past, present and future // J. Mar. Biol. Assoc. UK. V. 99. № 6. P. 1237–1246. https://doi.org/10.1017/s0025315419000201
  46. Dobrovolov I., Ivanova P., Georgiev Z. et al. 2012. Allozyme variation and genetic identification of shad species (Pisces: Clupeidae, genus Alosa) along Bulgarian Black Sea coast // Acta Zool. Bulg. V. 64. № 2. P. 175–183.
  47. Dyldin Y.V., Orlov A.M., Hanel L. et al. 2022. Ichthyofauna of the fresh and brackish waters of Russia and adjacent areas: annotated list with taxonomic comments. 1. Families Petromyzontidae–Pristigasteridae // J. Ichthyol. V. 62. № 3. P. 385–414. https://doi.org/10.1134/S0032945222030031
  48. Esmaeili H.R., Coad B.W., Mehraban H.R. et al. 2014. An updated checklist of fishes of the Caspian Sea basin of Iran with a note on their zoogeography // Iran. J. Ichthyol. V. 1. № 3. P. 152–184.
  49. Faria R., Wallner B., Weiss S., Alexandrino P. 2004. Isolation and characterization of eight dinucleotide microsatellite loci from two closely related clupeid species (Alosa alosa and A. fallax) // Mol. Ecol. Notes. V. 4. № 4. P. 586–588. https://doi.org/10.1111/j.1471-8286.2004.00745.x
  50. Faria R., Weiss S., Alexandrino P. 2006. A molecular phylogenetic perspective on the evolutionary history of Alosa spp. (Clupeidae) // Mol. Phylogent. Evol. V. 40. № 1. P. 298–304. https://doi.org/10.1016/j.ympev.2006.02.008
  51. Faria R., Weiss S., Alexandrino P. 2012. Comparative phylogeography and demographic history of European shads (Alosa alosa and A. fallax) inferred from mitochondrial DNA // BMC Evol. Biol. V. 12. № 1. Article 194. https://doi.org/10.1186/1471-2148-12-194
  52. Fazli H., Daryanabard G., Naderi Jolodar M. et al. 2021. Length-weight relationship, condition factor and relative condition factor of Alosa braschnikowi and A. caspia in the southeast of the Caspian Sea (Goharbaran) // Casp. J. Environ. Sci. V. 19. № 1. P. 105–113. https://doi.org/10.22124/cjes.2021.4501
  53. Fraser D.J., Debes P.V., Bernatchez L, Hutchings J.A. 2014. Population size, habitat fragmentation, and the nature of adaptive variation in a stream fish // Proc. R. Soc. B. V. 281. № 1790. Article 20140370. https://doi.org/10.1098/rspb.2014.0370
  54. Fricke R., Eschmeyer W.N., van der Laan R. (eds.). 2024. Eschmeyer’s catalog of fishes: genera, species, references (http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp. Version 10/2024).
  55. Fujita M.K., Leaché A.D., Burbrink F.T. et al. 2012. Coalescent-based species delimitation in an integrative taxonomy // Trends Ecol. Evol. V. 27. № 9. P. 480–488. https://doi.org/10.1016/j.tree.2012.04.012
  56. Geiger M.F., Herder F., Monaghan M.T. et al. 2014. Spatial heterogeneity in the Mediterranean Biodiversity Hotspot affects barcoding accuracy of its freshwater fishes // Mol. Ecol. Resour. V. 14. № 6. P. 1210–1221. https://doi.org/10.1111/1755-0998.12257
  57. Giantsis I.A., Kechagia S., Apostolidis A.P. 2015. Evaluating the genetic status of the IUCN vulnerable endemic Macedonian shad (Alosa macedonica, Vinciguerra, 1921) from Lake Volvi // J. Appl. Ichthyol. V. 31. № 1. P. 184–187. https://doi.org/10.1111/jai.12494
  58. Jafari O., Shabany A., Miandare H.K. 2014. A study of genetic population of Alosa braschnicowi (Borodin, 1904) in Sari and Mahmodabad coasts in the Caspian Sea, using microsatellite loci // Int. J. Aquat. Biol. V. 2. № 1. P. 20–26. https://doi.org/10.22034/ijab.v2i1.19
  59. Jafari O., Fernandes J.M.d.O., Hedayati A.-A. et al. 2019. Microsatellite analysis of five populations of Alosa braschnikowi (Borodin, 1904) across the southern coast of the Caspian Sea // Front. Genet. V. 10. Article 760. https://doi.org/10.3389/fgene.2019.00760
  60. Jolly M.T., Maitland P.S., Genner M.J. 2011. Genetic monitoring of two decades of hybridization between allis shad (Alosa alosa) and twaite shad (Alosa fallax) // Conserv. Genet. V. 12. № 4. P. 1087–1100. https://doi.org/10.1007/s10592-011-0211-3
  61. Julian S.E., Bartron M.L. 2007. Microsatellite DNA markers for American shad (Alosa sapidissima) and cross‐species amplification within the family Clupeidae // Mol. Ecol. Notes. V. 7. № 5. P. 805–807. https://doi.org/10.1111/j.1471-8286.2007.01710.x
  62. Kiessling A., Johansson D., Zahl I.H., Samuelsen O.B. 2009. Pharmacokinetics, plasma cortisol and effectiveness of benzocaine, MS-222 and isoeugenol measured in individual dorsal aorta-cannulated Atlantic salmon (Salmo salar) following bath administration // Aquaculture. V. 286. № 3–4. P. 301–308. https://doi.org/10.1016/j.aquaculture.2008.09.037
  63. Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences // J. Mol. Evol. V. 16. № 2. P. 111–120. https://doi.org/10.1007/BF01731581
  64. Kochzius M., Seidel C., Antoniou A. et al. 2010. Identifying fishes through DNA barcodes and microarrays // PloS One. V. 5. № 9. Article e12620. https://doi.org/10.1371/journal.pone.0012620
  65. Lavoué S., Miya M., Musikasinthorn P. et al. 2013. Mitogenomic evidence for an Indo-West Pacific origin of the Clupeoidei (Teleostei: Clupeiformes) // Ibid. V. 8. № 2. Article e56485. https://doi.org/10.1371/journal.pone.0056485
  66. Librado P., Rozas J. 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data // Bioinformatics. V. 25. № 11. P. 1451–1452. https://doi.org/10.1093/bioinformatics/btp187
  67. Limburg K.E., Hattala K.A., Kahnle A. 2003. American shad in its native range // Am. Fish. Soc. Symp. V. 35. P. 125–140.
  68. Maricchiolo G., Genovese L. 2011. Some contributions to knowledge of stress response in innovative species with particular focus on the use of the anaesthetics // Open Mar. Biol. J. V. 5. P. 24–33. https://doi.org/10.2174/1874450801105010024
  69. McPherson A.A., O’Reilly P.T., McParland T.L. et al. 2001. Isolation of nine novel tetranucleotide microsatellites in Atlantic herring (Clupea harengus) // Mol. Ecol. Notes. V. 1. № 1–2. P. 31–32. https://doi.org/10.1046/j.1471-8278.2000.00012.x
  70. Mezhzherin S.V., Fedorenko L.V., Verlatyi D.B. 2009. Differentiation and allozyme variability of shads genus Alosa (Clupeiformes, Alosiinae) from Azov-Black Sea basin // Cytol. Genet. V. 43. № 2. P. 118–122. https://doi.org/10.3103/S0095452709020078
  71. Miller K.M., Laberee K., Schulze A.D., Kaukinen K.H. 2002. Development of microsatellite loci in Pacific herring (Clupea pallasi) // Mol. Ecol. Notes. V. 1. № 3. P. 131–132. https://doi.org/10.1046/j.1471-8278.2001.00048.x
  72. Olsen J.B., Lewis C.J., Kretschmer E.J. et al. 2002. Characterization of 14 tetranucleotide microsatellite loci derived from Pacific herring // Ibid. V. 2. № 2. P. 101–103. https://doi.org/10.1046/j.1471-8286.2002.00160.x
  73. Pante E., Schoelinck C., Puillandre N. 2015. From integrative taxonomy to species description: one step beyond // Syst. Biol. V. 64. № 1. P. 152–160. https://doi.org/10.1093/sysbio/syu083
  74. Topic Popovic N.T., Strunjak-Perovic I., Coz-Rakovac R. et al. 2012. Tricaine methane‐sulfonate (MS‐222) application in fish anaesthesia // J. Appl. Ichthyol. V. 28. № 4. P. 553–564. https://doi.org/10.1111/j.1439-0426.2012.01950.x
  75. Raymond M., Rousset F. 1995. GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism // J. Heredity. V. 8. № 3. P. 248–249. https://doi.org/10.1093/oxfordjournals.jhered.a111573
  76. Rougemont Q., Besnard A.-L., Baglinière J.-L., Launey S. 2015. Characterization of thirteen new microsatellite markers for allis shad (Alosa alosa) and twaite shad (Alosa fallax) // Conserv. Genet. Resour. V. 7. № 1. P. 259–261. https://doi.org/10.1007/s12686-014-0352-z
  77. Sabatino S.J., Faria R., Alexandrino P.B. 2022. Genetic structure, diversity, and connectivity in anadromous and freshwater Alosa alosa and A. fallax // Mar. Biol. V. 169. № 1. Article 2. https://doi.org/10.1007/s00227-021-03970-4
  78. Sanger F., Nicklen S., Coulson A.R. 1977. DNA sequencing with chain-terminating inhibitors // Proc. Natl. Acad. Sci. V. 74. № 12. P. 5463–5467. https://doi.org/10.1073/pnas.74.12.5463
  79. Tamura K., Peterson D., Peterson N. et al. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods // Mol. Biol. Evol. V. 28. № 10. P. 2731–2739. https://doi.org/10.1093/molbev/msr121
  80. Teacher A.G.F., Kähkönen K., Merilä J. 2011. Development of 61 new transcriptome-derived microsatellites for the Atlantic herring (Clupea harengus) // Conserv. Genet. Resour. V. 4. № 1. P. 71–74. https://doi.org/10.1007/s12686-011-9477-5
  81. Turan C., Ergüden D., Gürlek M. et al. 2015. Molecular systematic analysis of shad species (Alosa spp.) from Turkish marine waters using mtDNA genes // Turk. J. Fish. Aquat. Sci. V. 15. № 1. P. 149–155. http://doi.org/10.4194/1303-2712-v15_1_16
  82. Van Oosterhout C., Hutchinson W.F., Wills D.P.M., Shipley P. 2004. MICRO‐CHECKER: software for identifying and correcting genotyping errors in microsatellite data // Mol. Ecol. Notes. V. 4. № 3. P. 535–538. https://doi.org/10.1111/j.1471-8286.2004.00684.x
  83. Vernygora O.V., Davis C.S., Murray A.M., Sperling F.A.H. 2018. Delimitation of Alosa species (Teleostei: Clupeiformes) from the Sea of Azov: integrating morphological and molecular approaches // J. Fish Biol. V. 93. № 6. P. 1216–1228. https://doi.org/10.1111/jfb.13847
  84. Ward R.D., Zemlak T.S., Innes B.H. et al. 2005. DNA barcoding Australia’s fish species // Phil. Trans. R. Soc. B. V. 360. № 1462. P. 1847–1857. https://doi.org/10.1098/rstb.2005.1716
  85. Waters J.M., Epifanio J.M., Gunter T., Brown B.L. 2000. Homing behaviour facilitates subtle genetic differentiation among river populations of Alosa sapidissima: microsatellites and mtDNA // J. Fish Biol. V. 56. № 3. P. 622–636. https://doi.org/10.1111/j.1095-8649.2000.tb00760.x
  86. Yeager L.A., Keller D.A., Burns T.R. et al. 2016. Threshold effects of habitat fragmentation on fish diversity at landscapes scales // Ecology. V. 97. № 8. P. 2157–2166. https://doi.org/10.1002/ecy.1449
  87. Yilmaz S., Polat N. 2002. Age determination of shad (Alosa pontica Eichwald, 1838) inhabiting the Black Sea // Turk. J. Zool. V. 26. № 4. P. 393–398.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Average daily water temperature in the Akhtuba (━━━) and Volga (- - -) river beds in May–July 2021.

Download (837KB)
3. Fig. 2. Black-backed herring Alosa kessleri kessleri Akhtuba River: a – female with body length according to Smith (FL) 349 mm, age 4 years, IV–V stage of gonadal maturity; б – male FL 322 mm, 4 years, IV–V.

Download (4MB)
4. Fig. 3. The structure of the gill rakers of the black-backed herring Alosa kessleri kessleri of the Akhtuba River from samples of 2020–2022. Variability in the length of the gill rakers and the shape of their outer edge (wet preparations at the time of biological analysis (a–г) and alizarin preparations (д, е). Gill rakers: a, б — equal in length to the gill filaments; в, г — shorter than the gill filaments; outer margin: a, в — straight; б — slightly convex, wavy; г — forms a convex arc; д — sp.br. 81, female FL 288, gonads at maturity stage IV, 14.05.2021; e — sp.br. 51, male FL 252, IV, 15.05.2021; ж — gill rakers are broken off, sp.br. 67, female FL 298, IV, 14.05.2021; з — lateral spines on the gill rakers.Scale (rulers are common for а–г and д–ж), mm: а–ж — 20; з — 2.

Download (6MB)
5. Fig. 3. (End).

Download (7MB)
6. Fig. 4. The number of gill rakers (sp.br.) depending on the body length (FL) of the black-backed herring Alosa kessleri kessleri of the Akhtuba River from the 2021 sample, n = 544: (―) — trend line, r = 0.34, p = 0.

Download (1MB)
7. Fig. 5. Early development stages of the black-backed herring Alosa kessleri kessleri from ichthyoplankton collections in the Akhtuba River, fixed material: a–в — egg: a — with embryo at the stage of ~80% fouling, б — the same before the beginning of separation of the tail bud, в — with embryo before exiting the egg membrane; г — early prelarva with absolute length (TL) ~3.6 mm; д, e — prelarvae TL 5.3 and ~6.2 mm. Scale: 1 mm.

Download (9MB)

Copyright (c) 2025 Russian Academy of Sciences