On the classical approach to describing the diffusion of cosmic rays in a turbulent medium

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The inhomogeneous structure of the interstellar medium (ISM) is characterized by largescale fluctuations that significantly affect the cosmic ray propagation process. Accounting for this influence can not only lead to adjustments in the diffusion process parameters but even to pass from differential operators to integral ones. The most crucial characteristics of a turbulent medium is its power spectrum. Including appropriate approximations of this spectrum allows us to consider this problem in the framework of the traditional diffusion approach [1, 2]. This article explores the analytical representations of this spectrum applied in the cosmic ray transfer theory, including the four-parameter Uchaikin—Zolotarev approximation, derived from the generalized Ornstein—Zernike equation. Testing of the latter revealed that, with carefully chosen parameters, it accurately replicates numerical modeling results both in the inertial interval and beyond. Therefore, it can be effectively employed in addressing cosmic ray transfer issues within a turbulent interstellar medium.

Full Text

Restricted Access

About the authors

Vladimir V. Uchaikin

Ulyanovsk State University

Author for correspondence.
Email: vuchaikin@gmail.com

Department of Theoretical Physics

Russian Federation, Ulyanovsk

Ilya I. Kozhemyakin

Ulyanovsk State University

Email: kozhilya@gmail.com

Department of Theoretical Physics

Russian Federation, Ulyanovsk

Vladimir A. Litvinov

Barnaul Law Institute of the Ministry of Internal Affairs of Russia

Email: vuchaikin@gmail.com
Russian Federation, Barnaul

References

  1. А. Быков, И. Топтыгин, ЖЭТФ 70, 194 (1990).
  2. V. S. Ptuskin, Sov. Astron. Lett. 14, 255 (1988); https://ui.adsabs.harvard. edu/abs/1988SvAL…14..255P
  3. P. Reichherzer, L. Merten, J. Dörner, J. Becker Tjus, M. J. Pueschel, and E. G. Zweibel, SN Appl. Sci. 4, 15 (2022); https://link.springer.com/10.1007/ s42452-021-04891-z
  4. В. Зацепин, А. Панов, Н. Сокольская, Дж. Адамс мл., Х. Ан, Г. Башинджагян, Дж. Ваттс, Дж. Вефель, Дж. Ву, Т. Гузик, И. Изберт, К. Ким, М. Кристл, Е. Кузнецов, М. Панасюк, Э. Сио, Дж. Чанг, А. Фазели, Письма в Астрон. журн. 35, 377 (2009).
  5. A. Erlykin and A. Wolfendale, Astropart. Phys. 25, 183 (2006); https:// linkinghub.elsevier.com/retrieve/pii/S0927650506000041
  6. E. S. Seo and V. S. Ptuskin, Astrophys. J. 431, 705 (1994); http://adsabs. harvard.edu/doi/10.1086/174520
  7. B. R. Ragot and J. G. Kirk, Astron. Astrophys. 327, 432 (1997); https://ui. adsabs.harvard.edu/abs/1997A&A…327..432R
  8. В. В. Учайкин, УФН 183, 1175 (2013); http://ufn.ru/ru/articles/2013/11/ b/
  9. В. В. Учайкин, А. Д. Ерлыкин, Р. Т. Сибатов, УФН 193, 233 (2023); https: //ufn.ru/ru/articles/2023/3/a/
  10. L. I. Dorman, Cosmic Rays in the Earth’s Atmosphere and Underground (Kluwer Academ. Publ., Dordrecht; Boston, 2004).
  11. R. C. Tautz and A. Dosch, Phys. Plasmas 20, 022302 (2013); https://doi.org/ 10.1063%2F1.4789861
  12. J. Giacalone and J. R. Jokipii, Astrophys. J. 520, 204 (1999); https:// iopscience.iop.org/article/10.1086/307452
  13. A. Shalchi and B. Weinhorst, Adv. Space Res. 43, 1429 (2009); https:// linkinghub.elsevier.com/retrieve/pii/S0273117709000052
  14. А. С. Монин, А. М. Яглом, Статистическая гидромеханика. Механика турбулентности (Наука, Москва, 1967).
  15. B. B. Mandelbrot, The Fractal Geometry of Nature (W. H. Freeman, San Francisco, 1982).
  16. V. V. Uchaikin and V. M. Zolotarev, Chance and Stability: Stable Distributions and their Applications (Walter de Gruyter, 1999).
  17. V. V. Uchaikin, Gen. Relativ. Grav. 36, 1689 (2004).
  18. В. В. Учайкин, Итоги науки и техн. Сер. Соврем. мат. и ее прил. Темат. обз. 220, 125 (2023); https://doi.org/10.36535/0233-6723-2023-220-125-144
  19. В. В. Учайкин, Итоги науки и техн. Сер. Соврем. мат. и ее прил. Темат. обз. 221, 128 (2023); https://doi.org/10.36535/0233-6723-2023-221-128-147
  20. В. В. Учайкин, Итоги науки и техн. Сер. Соврем. мат. и ее прил. Темат. обз. 222, 115 (2023); https://doi.org/10.36535/0233-6723-2023-222-115-133
  21. T. Nozakura, Mon. Not. Roy. Astron. Soc. 243, 543 (1990).
  22. S. Buonocore and M. Sen, AIP Advanc. 11, 055221 (2021); https://doi.org/ 10.1063/5.0049401
  23. P. Peebles, The Large-scale Structure of the Universe, Princeton Series in Physics (Princeton University Press, 1980); https://press.princeton.edu/books/ paperback/9780691209838/the-large-scale-structure-of-the-universe
  24. L. Brandt and F. Coletti, Ann. Rev. Fluid Mech. 54, 159 (2022).
  25. D. Falceta-Gongalves, G. Kowal, E. Falgarone, and A. C.-L. Chian, Nonlin. Proc. Geophys. 21, 587 (2014); https://npg.copernicus.org/articles/21/587/ 2014/
  26. T. Inoue, R. Yamazaki, and S.-I. Inutsuka, Astrophys. J. 695, 825 (2009); https: //iopscience.iop.org/article/10.1088/0004-637X/695/2/825
  27. J.-F. Robitaille, A. Abdeldayem, I. Joncour, E. Moraux, F. Motte, P. Lesaffre, and A. Khalil, Astron. Astrophys. 641, A138 (2020); https://www.aanda.org/10.1051/ 0004-6361/201937085
  28. J. Cho and A. Lazarian, Mon. Not. Roy. Astron. Soc. 345, 325 (2003); https: //academic.oup.com/mnras/article/345/1/325/984760
  29. B. Burkhart, A. Lazarian, V. Ossenkopf, and J. Stutzki, Astrophys. J. 771, 123 (2013); https://iopscience.iop.org/article/10.1088/0004-637X/771/2/123

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. (a–z) Ultrasonic approximations of the power spectra of turbulent velocity fluctuations in four different regimes numerically modeled in [25–27]. Dashed curves represent the modeling results, solid curves represent their approximations using formula (4). Sloping lines correspond to purely power-law spectra.

Download (477KB)

Copyright (c) 2024 Russian Academy of Sciences