Theoretical study of the deuteron + deuteron radiative capture
- Authors: Solovyev A.S.1
-
Affiliations:
- Dukhov Automatics Research Institute (VNIIA)
- Issue: Vol 87, No 2 (2024)
- Pages: 108-112
- Section: МАТЕРИАЛЫ 73-Й МЕЖДУНАРОДНОЙ КОНФЕРЕНЦИИ ПО ЯДЕРНОЙ ФИЗИКЕ. Ядра. Теория
- Published: 07.10.2024
- URL: https://cardiosomatics.ru/0044-0027/article/view/674664
- DOI: https://doi.org/10.31857/S0044002724020076
- EDN: https://elibrary.ru/KRJGYY
- ID: 674664
Cite item
Abstract
In the present work, the d + d radiative capture process is studied. This process is of significant interest for astrophysical applications. The theoretical framework of the study is based on the microscopic cluster approach in the oscillator representation. The total and partial cross sections for the reaction in terms of the astrophysical S factor are calculated. A good agreement with experimental data is achieved. The tensor force of the nuclear interaction is shown to play a key role in describing the low-energy dependence of the total cross section (astrophysical S factor).
Full Text

About the authors
A. S. Solovyev
Dukhov Automatics Research Institute (VNIIA)
Author for correspondence.
Email: solovyev@mail.ru
Russian Federation, Moscow
References
- R. H. Cyburt, B. D. Fields, K. A. Olive, and T.-H. Yeh, Rev. Mod. Phys. 88, 015004 (2016).
- R. W. Zurmühle, W. E. Stephens, and H. H. Staub, Phys. Rev. 132, 751 (1963).
- F. J. Wilkinson III and F. E. Cecil, Phys. Rev. C 31, 2036 (1985).
- H. R. Weller, P. Colby, J. Langenbrunner, Z. D. Huang, D. R. Tilley, F. D. Santos, A. Arriaga, and A. M. Eiró, Phys. Rev. C 34, 32 (1986).
- C. A. Barnes, K. H. Chang, T. R. Donoghue, C. Rolfs, and J. Kammeraad, Phys. Lett. B 197, 315 (1987).
- J. Zhou, Y.-Y. Fu, S.-H. Zhou, H.-H. Xia, C.-B. Li, and Q.-Y. Meng, Chin. Phys. C 33, 350 (2009).
- Y. Xu, K. Takahashi, S. Goriely, M. Arnould, M. Ohta, and H. Utsunomiya, Nucl. Phys. A 918, 61 (2013).
- F. D. Santos, A. Arriaga, A. M. Eiró, and J. A. Tostevin, Phys. Rev. C 31, 707 (1985).
- J. A. Tostevin, Phys. Rev. C 34, 1497 (1986).
- H. J. Assenbaum and K. Langanke, Phys. Rev. C 36, 17 (1987).
- G. Blüge, H. J. Assenbaum, and K. Langanke, Phys. Rev. C 36, 21 (1987).
- J. Piekarewicz and S. E. Koonin, Phys. Rev. C 36, 875 (1987).
- B. Wachter, T. Mertelmeier, and H. M. Hofmann, Phys. Lett. B 200, 246 (1988).
- A. Arriaga, A. M. Eiró, F. D. Santos, and J. E. Ribeiro, Phys. Rev. C 37, 2312 (1988).
- A. Arriaga, V. R. Pandharipande, and R. Schiavilla, Phys. Rev. C 43, 983 (1991).
- K. Sabourov, M. W. Ahmed, S. R. Canon, B. Crowley, K. Joshi, J. H. Kelley, S. O. Nelson, B. A. Perdue, E. C. Schreiber, A. Sabourov, A. Tonchev, H. R. Weller, E. A. Wulf, R. M. Prior, M. C. Spraker, H. M. Hofmann, and M. Trini, Phys. Rev. C 70, 064601 (2004).
- Y.-Q. Ma, Y. Tian, and Z.-Y. Ma, Chin. Phys. Lett. 24, 69 (2007).
- K. Arai, S. Aoyama, Y. Suzuki, P. Descouvemont, and D. Baye, Phys. Rev. Lett. 107, 132502 (2011).
- P. Descouvemont, D. Baye, Y. Suzuki, S. Aoyama, and K. Arai, AIP Adv. 4, 041011 (2014).
- A. S. Solovyev, Phys. Rev. C 106, 014610 (2022).
- А. С. Соловьев, ЯФ 86, 132 (2023) [A. S. Solovyev, Phys. At. Nucl. 86, 24 (2023)].
- H. Kanada, T. Kaneko, S. Nagata, and M. Nomoto, Prog. Theor. Phys. 61, 1327 (1979).
- A. S. Solovyev and S. Yu. Igashov, Phys. Rev. C 96, 064605 (2017).
- A. S. Solovyev and S. Yu. Igashov, Phys. Rev. C 99, 054618 (2019).
- А. С. Соловьев, Изв. РАН. Сер. физ. 84, 534 (2020) [A. S. Solovyev, Bull. Russ. Acad. Sci.: Phys. 84, 411 (2020)].
- D. R. Tilley, H. R. Weller, and G. M. Hale, Nucl. Phys. A 541, 1 (1992).
- G. Audi, A. H. Wapstra, and C. Thibault, Nucl. Phys. A 729, 337 (2003).
Supplementary files
