Cosmophysical aspects of relativistic nuclear fragmentation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The status of the study of multiple fragmentation of 950 MeV per nucleon Kr nuclei in a nuclear track emulsion aimed at determining the contributions of 2α decays of 8Be, the Hoyle 3α state, and the search for a 4α particle condensate state, is presented. In events with the production of few relativistic fragments of He and H, the possibility of estimating the multiplicity of neutrons in the fragmentation cone of a projectile nucleus is studied. For the planar component of neutron transverse momenta estimated from the angles of observed secondary stars, the Rayleigh distribution parameter was 35 ± 7 MeV/c. The importance of such events for the interpretation of cosmophysical observations is noted.

About the authors

A. A. Zaitsev

Joint Institute for Nuclear Research; P. N. Lebedev Physical Institute of the Russian Academy of Sciences

Author for correspondence.
Email: zaicev@jinr.ru
Russian Federation, Dubna; Moscow

N. Marimuthu

Joint Institute for Nuclear Research

Email: zaicev@jinr.ru
Russian Federation, Dubna

D. A. Artemenkov

Joint Institute for Nuclear Research

Email: zaicev@jinr.ru
Russian Federation, Dubna

P. I. Zarubin

Joint Institute for Nuclear Research; P. N. Lebedev Physical Institute of the Russian Academy of Sciences

Email: zaicev@jinr.ru
Russian Federation, Dubna; Moscow

N. G. Peresadʹko

Email: zaicev@jinr.ru
Russian Federation

V. V. Rusakova

Joint Institute for Nuclear Research

Email: zaicev@jinr.ru
Russian Federation, Dubna

References

  1. D. A. Artemenkov, V. Bradnova, O. N. Kashanskaya, N. V. Kondratieva, N. K. Kornegrutsa, E. Mitsova, N. G. Peresadko, V. V. Rusakova, R. Stanoeva, A. A. Zaitsev, I. G. Zarubina, and P. I. Zarubin, Phys. At. Nucl. 85, 528 (2022); doi.org/10.1134/S1063778822060035; arXiv: 2206.09690.
  2. A. Tohsaki, H. Horiuchi, P. Schuck, and G. Ropke, Rev. Mod. Phys. 89, 011002 (2017); doi.org/10.1103/RevModPhys.89.011002
  3. W. von Oertzen, Lect. Notes Phys. 818, 1 (2010); doi.org/10.1007/978-3-642-13899-7_3
  4. J. Abdallah et al. (DELPHI Collab.), Astophys. J. 28, 273 (2007); doi.org/10.1016/j.astropartphys.2007.06.001; arXiv: 0706.2561 [astro-ph].
  5. A. G. Bogdanov, R. P. Kokoulin, G. Manocchi, A. A. Petrukhin, and O. Saavedra, Astophys. J. 98, 13 (2018); doi.org/10.1016/j.astropartphys.2018.01.003
  6. V. S. Vorobev and A. A. Petrukhin, Phys. At. Nucl. 84, 934 (2021); doi.org/10.1134/S1063778821130408
  7. G. Trinchero, M. B. Amelchakov, A. G. Bogdanov, A. Chiavassa, A. N. Dmitrieva, G. Mannocchi, S. S. Khokhlov, R. P. Kokoulin, K. G. Kompaniets, A. A. Petrukhin, V. V. Shutenko, I. A. Shulzhenko, I. I. Yashin, and E. A. Yurina, Astophys. J. 945, 123 (2023); doi.org/10.3847/1538-4357/acb1fc; arXiv: 2210.09690.
  8. S. Typel, G. Röpke, T. Klähn, D. Blaschke, and H. H. Wolter, Phys. Rev. C 81, 015803 (2010); doi.org/10.1103/PhysRevC.81.015803; arXiv.org/ abs/0908.2344 [nucl-th].

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences