Ionization Loss Simulation in Gaps of Fast Neutron Detector Based on 10B Layer and Gaseous Chamber
- Autores: Potashev S.I.1
- 
							Afiliações: 
							- Institute for Nuclear Research of Russian Academy of Sciences
 
- Edição: Volume 86, Nº 5 (2023)
- Páginas: 634-638
- Seção: МАТЕРИАЛЫ 6-ОЙ МЕЖДУНАРОДНОЙ КОНФЕРЕНЦИИ “ICPPA-2022”. Элементарные частицы и поля
- ##submission.datePublished##: 01.09.2023
- URL: https://cardiosomatics.ru/0044-0027/article/view/674695
- DOI: https://doi.org/10.31857/S0044002723050355
- EDN: https://elibrary.ru/IFDUYA
- ID: 674695
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
An ionization loss simulation in several sequent gaps of the neutron detector is performed. It is based on the boron-10 rigid layer converter and gaseous chamber. It was shown that the distribution of ionization losses over gas gaps varies significantly depending on the incident neutron energy. The fact can be used to control the energy of the neutron flux using this detector.
Sobre autores
S. Potashev
Institute for Nuclear Research of Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: potashev@inr.ru
				                					                																			                												                								Moscow, Russia						
Bibliografia
- M. Henske, M. Klein, M. Kohli, P. Lennert, G. Modzel, C. Schmidt, and U. Schmidt, Nucl. Instrum. Methods A 686, 151 (2012).
- F. Piscitelli, F. Messi, M. Anastasopoulos, T. Brys, F. Chicken, E. Dian, J. Fuzi, C. Hoglund, G. Kiss, J. Orban, P. Pazmandi, L. Robinson, L. Rosta, S. Schmidt, D. Varga, T. Zsiros, and R. Hall-Wilton, J. Instrum. 12, 03013 (2017).
- Jianrong Zhou, Q. Xiu, X. Zhou, Jianjin Zhou, L. Ma, Ch. J. Schmidt, M. Klein, Y. Xia, L. Zhou, C. Huang, G. Sun, B. Hu, Z. Sun, and Y. Chen, Nucl. Instrum. Methods A 953, 163051 (2020).
- S. I. Potashev, Yu. M. Burmistrov, A. I. Drachev, S. V. Zuyev, S. Kh. Karaevskii, A. A. Kasparov, E. S. Konobeevskii, S. P. Kuznetsov, V. N. Marin, V. N. Ponomarev, and G. V. Solodukhov, J. Surf. Investig. X-ray, Synchrotr. Neutr. Techn. 12, 627 (2018).
- S. I. Potashev, A. A. Afonin, Yu. M. Burmistrov, A. I. Drachev, E. S. Konobeevskii, V. N. Marin, I. V. Meshkov, S. Kh. Karaevskii, A. A. Kasparov, V. N. Ponomarev, G. V. Solodukhov, and S. V. Zuyev, Bull. Russ. Acad. Sci.: Phys. 85, 1068 (2021).
- S. I. Potashev, A. I. Drachev, Yu. Burmistrov, S. Karaevsky, A. Kasparov, V. Ponomarev, and G. Solodukhov, EPJ Web Conf. 231, 05010 (2020).
- А. А. Каспаров, С. И. Поташев, А. А. Афонин, Ю. М. Бурмистров, А. И. Драчев, Изв. РАН. Сер. физ. 85, 694 (2021).
- I. Lehraus, R. Mattehewson, and W. Tejessy, Nucl. Instrum. Methods A 196, 361 (1982).
- S. I. Potashev, A. A. Kasparov, and V. N. Ponomarev, Bull. Russ. Acad. Sci.: Phys. 86, 1079 (2022).
- Tables of Physical Quantities, Еd. by I. K. Kikoin (Atomizdat, Moscow, 1976).
- R. Bevilacqua, F.-J. Hambsch, M. Vidali, I. Ruskov, and L. Lamia, EPJ Web of Conf. 146, 11010 (2017).
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 
