Search for Bound States in \(\boldsymbol{\Xi^{-}nn}\)-, \(\boldsymbol{\Xi^{-}pn}\)- and \(\boldsymbol{\Xi^{-}pp}\)- Systems

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Search for bound states in @, @, and @ systems is performed by employing coupled homogeneous integral Faddeev equations written in terms of 
-matrix components. Instead of the traditional partial-wave expansion, a direct integration with respect to angular variables is used in these equations, and three-body coupling in the phase space of each of the @–@–@, @–@–@, and @–@–@ systems is taken precisely into account within this approach. Two-body 
 matrices are the only ingredient of the proposed method. In the case of two-body @ interaction, they are found by solving the coupled Lippmann–Schwinger integral equations for the @–@–@ system in the (@, @) state, the @ system in the (@, @) state, the @–@ systemin the (@, @) state, and the @–@–@ system in the (@,@) state. An updated version of the ESC16 microscopic model is used to obtain two-body @, YY, and YN interactions generating @ matrices. Two-body NN @ nteraction is reconstructed on the basis of the charge-dependent Bonn model. Direct numerical calculations of the binding energy for the systems being considered clearly indicate that either of the @ and @ systems has one bound state with binding energies of 4.5 and 5.5 MeV, respectively, and that the @ system has two bound states with binding energies of 2.7 and 4.4 MeV.

About the authors

M. V. Egorov

Faculty of Physics, Tomsk State University

Author for correspondence.
Email: egorovphys@mail.ru
Tomsk, Russia

References

  1. J. K. Ahn, S. Aoki, K. S. Chung, M. S. Chung, H. En’yo, T. Fukuda, H. Funahashi, Y. Goto, A. Higashi, M. Ieiri, T. Iijima, M. Iinuma, K. Imai, Y. Itow, J. M. Lee, S. Makino, et al., Phys. Lett. B 633, 214 (2006); https://doi.org/10.1016/j.physletb.2005.12.057
  2. T. Tamagawa, J. K. Ahn, S. Ajimura, H. Akikawa, B. Bassalleck, A. Berdoz, D. Carman, R. E. Chrien, C. A. Davis, P. Eugenio, H. Fischer, G. B. Franklin, J. Franz, T. Fukuda, L. Gan, L. Tang, et al., Nucl. Phys. A 691, 234 (2001); https://doi.org/10.1016/S0375-9474(01)01035-1
  3. Y. Yamamoto, T. Tamagawa, T. Fukuda, and T. Motoba, Prog. Theor. Phys. 106, 363 (2001); https://doi.org/10.1143/PTP.106.363
  4. K. Nakazawa, Y. Endo, S. Fukunaga, K. Hoshino, S. H. Hwang, K. Imai, H. Ito, K. Itonaga, T. Kanda, M. Kawasaki, J. H. Kim, S. Kinbara, H. Kobayashi, A. Mishina, S. Ogawa, and H. Shibuya, Prog. Theor. Exp. Phys. 2015, 033D02 (2015); https://doi.org/10.1093/ptep/ptv008
  5. K. Aoki et al. (J-PARC Collab.), arXiv: 2110.04462 [nucl-ex].
  6. H. Garcilazo, A. Valcarce, and T. F. Caramés, J. Phys. G: Nucl. Part. Phys. 41, 095103 (2014); https://doi.org/10.1088/0954-3899/41/9/095103
  7. H. Garcilazo, A. Valcarce, and T. F. Caramés, J. Phys. G: Nucl. Part. Phys. 42, 025103 (2015); https://doi.org/10.1088/0954-3899/42/2/025103
  8. H. Garcilazo, Phys. Rev. C 93, 024001 (2016); https://doi.org/10.1103/PhysRevC.93.024001
  9. H. Garcilazo and A. Valcarce, Phys. Rev. C 93, 034001 (2016); https://doi.org/10.1103/PhysRevC.93.034001
  10. I. Filikhin, V. Suslov, and B. Vlahovic, Math. Model. Geom. 5, 1 (2017); https://doi.org/10.48550/arXiv.1705.03446
  11. E. Hiyama, K. Sasaki, T. Miyamoto, D. Doi, T. Hatsuda, Y. Yamamoto, and Th. A. Rijken, Phys. Rev. Lett. 124, 092501 (2020); https://doi.org/10.1103/PhysRevLett.124.092501
  12. K. Miyagawa and M. Kohno, Few Body Syst. 62, 65 (2021).
  13. M. N. Nagels, Th. A. Rijken, and Y. Yamamoto, arXiv: 1504.02634 [nucl-th].
  14. M. N. Nagels, Th. A. Rijken, and Y. Yamamoto, Phys. Rev. C 102, 054003 (2020); https://doi.org/10.1103/PhysRevC.102.054003
  15. L. D. Faddeev, Sov. Phys. JETP 12, 1014 (1961).
  16. H. Liu, Ch. Elster, and W. Glockle, Phys. Rev. C 72, 054003 (2005); https://doi.org/10.1103/PhysRevC.72.054003
  17. M. Egorov, Phys. Rev. C 107, 014611(2023); https://doi.org/10.1103/PhysRevC.107.014611, см. также препринт: https://www.researchsquare.com/article/rs-2021229/v1
  18. J. Revai and N. V. Shevchenko, Phys. Rev. C 90, 034004 (2014); https://doi.org/10.1103/PhysRevC.90.034004
  19. W. Glöckle, H. Witała, D. Hüber, H. Kamada, and J. Golak, Phys. Rep. 274, 107 (1996); https://doi.org/ 10.1016/0370-1573(95)00085-2
  20. J. Haidenbauer, Y. Koike, and W. Plessas, Phys. Rev. C 33, 439 (1986); https://doi.org/10.1103/PhysRevC.33.439
  21. M. M. Nagels, Th. A. Rijken, and Y. Yamamoto, Phys. Rev. C 99, 044003 (2019); https://doi.org/10.1103/PhysRevC.99.044003; http://nn-online.org
  22. M. Egorov and V. Postnikov, Nucl. Phys. A 1009, 122172 (2021); https://doi.org/10.1016/j.nuclphysa.2021.122172
  23. J. Adam et al. (STAR Collab.), Nat. Phys. 16, 409 (2020); https://doi.org/10.1038/s41567-020-0799-7
  24. B. Sechi-Zorn, B. Kehoe, and J. Twitty, Phys. Rev. 175, 1735 (1968); https://doi.org/10.1103/PhysRev.175.1735
  25. G. Alexander, U. Karshon, A. Shapira, and G. Yekutiely, Phys. Rev. 173, 1452 (1968); https://doi.org/10.1103/PhysRev.173.1452
  26. R. Engelmann, H. Filthuth, V. Hepp, and E. Kluge, Phys. Lett. 21, 587 (1968); https://doi.org/10.1016/0031-9163(66)91310-2
  27. F. Eisele, H. Filthuth, W. Foehlisch, V. Hepp, and G. Zech, Phys. Lett. B 37, 204 (1971); https://doi.org/10.1016/0370-2693(71)90053-0
  28. H. Garcilazo, A. Valcarce, and J. Vijande, Phys. Rev. C 94, 024002 (2016); https://doi.org/10.1103/PhysRevC.94.024002

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Pleiades Publishing, Ltd.