Use of Global Predictions for Beta-Decay Rates in Astrophysical Models

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The nucleosynthesis of heavy elements is calculated for two scenarios of neutron-star merger. Various global beta-decay models, including those based on the random-phase approximation (QRPA), relativistic quasiparticle RPA (pn-RQRPA), and the finite-amplitude method (FAM), were employed in these calculations. It is shown that the application of various global models in calculations of nucleosynthesis leads to the formation of a realistic structure of the curve of abundances of chemical elements. In contrast to nucleosynthesis in the scenario of merger of equal-mass neutron stars, the formation of elements in matter of the outer crust upon the explosion of a low-mass neutron star is weakly model-dependent in the region from the first to the second peak. However, the abundance of elements depends greatly on the beta-decay model in a strong r-process. No systematic effect of the beta-decay model on the results of nucleosynthesis is revealed.

About the authors

I. V. Panov

National Research Center Kurchatov Institute; Moscow Institute of Physics and Technology (National Research University)

Author for correspondence.
Email: Igor.Panov@itep.ru
Moscow, Russia; Dolgoprudny, Moscow oblast, Russia

References

  1. J. J. Cowan, C. Sneden, J. E. Lawler, A. Aprahamian, M. Wiescher, K. Langanke, G. Martínez-Pinedo, and F.-K. Thielemann, Rev. Mod. Phys. 93, 015002 (2021).
  2. И. В. Панов, Письма в Астрон. журн. 29, 163 (2003).
  3. И. В. Панов, Ю. С. Лютостанский, ЯФ 83, 349 (2020) [Phys. At. Nucl. 83, 613 (2020)].
  4. E. M. Burbidge, G. R. Burbidge, W. A. Fowler, and F. Hoyle, Rev. Mod. Phys. 29, 547 (1957).
  5. P. A. Seeger, W. A. Fowler, and D. D. Clayton, Astrophys. J. Suppl. 11, 121 (1965).
  6. C. Sneden, J. J. Cowan, I. I. Ivans, G. M. Fuller, S. Burles, T. C. Beers, and J. E. Lawler, Astrophys. J. 533, L139 (2000).
  7. L. Hüdepohl, B. Müller, H.-T. Janka, A. Marek, and G. G. Raffelt, Phys. Rev. Lett. 104, 251101 (2010).
  8. С. И. Блинников и др., Письма в Астрон. журн. 10, 422 (1984) [S. I. Blinnikov, I. D. Novikov, T. V. Perevodchikova, and A. G. Polnarev, Astron. Lett. 10, 177 (1984)].
  9. F.-K. Thielemann, M. Eichler, I. V. Panov, and B. Wehmeyer, Ann. Rev. Nucl. Part. Sci. 67, 253 (2017).
  10. N. R. Tanvir, A. J. Levan, C. González-Fernández, O. Korobkin, I. Mandel, S. Rosswog, J. Hjorth, P. D’Avanzo, A. S. Fruchter, C. L. Fryer, T. Kangas, B. Milvang-Jensen, S. Rosetti, D. Steeghs, R. T. Wollaeger, Z. Cano, et al., Astrophys. J. Lett. 848, L27 (2017).
  11. D. Watson, C. J. Hansen, J. Selsing, A. Koch, D. B. Malesani, A. C. Andersen, J. P. U. Fynbo, A. Arcones, A. Bauswein, S. Covino, A. Grado, K. E. Heintz, L. Hunt, C. Kouveliotou, G. Leloudas, A. J. Levan, et al., Nature 574, 497 (2019).
  12. P. Moeller, J. R. Nix, and K.-L. Kratz, At. Data Nucl. Data Tables 66, 131 (1997).
  13. I. N. Borzov, S. A. Fayans, and E. L. Trykov, Nucl. Phys. A 584, 335 (1995).
  14. I. N. Borzov, Nucl. Phys. A 777, 645 (2006).
  15. И. Н. Борзов, ЯФ 83, 413 (2020) [I. N. Borzov, Phys. At. Nucl. 83, 700 (2020)].
  16. K.-L. Kratz, K. Farouqi, and B. Pfeiffer, Prog. Part. Nucl. Phys. 59, 147 (2007).
  17. И. В. Панов, ЯФ 81, 57 (2018) [I. V. Panov, Phys. At. Nucl. 81, 68 (2018)].
  18. I. V. Panov, Yu. S. Lutostansky, and F.-K. Thi- elemann, J. Phys.: Conf. Ser. 665, 012060 (2016).
  19. В. Г. Алексанкин, Ю. С. Лютостанский, И. В. Панов, ЯФ 34, 1451 (1981).
  20. J. Krumlinde and P. Moeller, Nucl. Phys. A 417, 419 (1984).
  21. E. M. Ney, J. Engel, and N. Schunck, Phys. Rev. C 102, 034326 (2020).
  22. T. Marketin, L. Huther, and G. Martinez-Pinedo, Phys. Rev. C 93, 025805 (2016).
  23. P. Moeller, B. Pfeiffer, and K.-L. Kratz, Phys. Rev. C 67, 055802 (2003).
  24. I. V. Panov, Book of Abstracts of the LXXI International Conference ‘‘NUCLEUS-2021’’, Ed. by V. N. Kovalenko and E. V. Andronov (VVM, Saint Petersburg, 2021), p. 269.
  25. И. В. Панов, Ф.-К. Тилеманн, Письма в Астрон. журн. 29, 508 (2003) [I. V. Panov and F.-K. Thielemann, Astron. Lett. 29, 510 (2003)].
  26. И. В. Панов, И. Ю. Корнеев, Ф.-К. Тилеманн, Письма в Астрон. журн. 34, 213 (2008) [I. V. Panov, I. Yu. Korneev, and F.-K. Thielemann, Astron. Lett. 34, 189 (2008)].
  27. И. В. Панов, И. Ю. Корнеев, Ф.-К. Тилеманн, ЯФ 72, 1070 (2009) [I. V. Panov, I. Yu. Korneev, and F.-K. Thielemann, Phys. At. Nucl. 72, 1026 (2009)].
  28. S. Rosswog, U. Feindt, O. Korobkin, M.-R. Wu, J. Sollerman, A. Goobar, and G. Martinez-Pinedo, Class. Quant. Grav. 34, 104001 (2017).
  29. S. Rosswog, T. Piran, and E. Nakar, Mon. Not. R. Astron. Soc. 430, 2585 (2013).
  30. O. Korobkin, S. Rosswog, A. Arcones, and C. Winteler, Mon. Not. R. Astron. Soc. 426, 1940 (2012).
  31. S. Rosswog, O. Korobkin, A. Arcones, F.-K. Thielemann, and T. Piran, Mon. Not. R. Astron. Soc. 439, 744 (2014).
  32. D. Martin, A. Perego, A. Arcones, F.-K. Thielemann, O. Korobkin, and S. Rosswog, Astrophys. J. 813, 2 (2015).
  33. С. И. Блинников, Д. К. Надежин, Н. И. Крамарев, А. В. Юдин, Астрон. журн. 98, 379 (2021) [S. I. Blinnikov, D. K. Nadyozhin, N. I. Kramarev, and A. V. Yudin, Astron. Rep. 65, 385 (2021)].
  34. И. В. Панов, А. В. Юдин, Письма в Астрон. журн. 46, 552 (2020) [I. V. Panov and A. V. Yudin, Astron. Lett. 46, 518 (2020)].
  35. И. В. Панов, А. В. Юдин, ЯФ 86, 1 (2023) [I. V. Panov and A. V. Yudin, Phys. At. Nucl. 86, 1 (2023)].
  36. И. Ю. Корнеев, И. В. Панов, Письма в Астрон. журн. 37, 930 (2011) [I. Yu. Korneev and I. V. Panov, Astron. Lett. 37, 864 (2011)].
  37. D. K. Nadyozhin, I. V. Panov, and S. I. Blinnikov, Astron. Astrophys. 335, 207 (1998).
  38. K. Langanke and G. Martinez-Pinedo, Nucl. Phys. A 673, 481 (2000).
  39. C. W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations (Englewood Cliffs, New Jersey: Prentice-Hall, 1971).
  40. S. I. Blinnikov and O. S. Bartunov, Astron. Astrophys. 273, 106 (1993).
  41. S. I. Blinnikov and N. V. Dunina-Barkovskaya, Mon. Not. R. Astron. Soc. 266, 289 (1994).
  42. Y. Aboussir, J. M. Pearson, A. K. Dutta, and F. Tondeur, At. Data Nucl. Data Tables 61, 127 (1995).
  43. P. Moeller, J. R. Nix, and K.-L. Kratz, At. Data Nucl. Data Tables 66, 131 (1997).
  44. T. Rauscher and F.-K. Thielemann, At. Data Nucl. Data Tables 75, 1 (2000).
  45. I. V. Panov, E. Kolbe, B. Pfeiffer, T. Rauscher, K.-L. Kratz, and F.-K. Thielemann, Nucl. Phys. A 747, 633 (2005).
  46. I. V. Panov, I. Yu. Korneev, T. Rauscher, G. Martinez-Pinedo, A. Kelic-Heil, N. T. Zinner, and F.-K. Thi- elemann, Astron. Astrophys. 513, A61 (2010).
  47. NuDat2, 2009, National Nuclear Data Center, http://www.nndc.bnl.gov/nudat2/
  48. А. В. Юдин, Т. Л. Разинкова, С. И. Блинников, Письма в Астрон. журн. 45, 893 (2020) [A. V. Yudin, T. L. Razinkova, and S. I. Blinnikov, Astron. Lett. 45, 847 (2020)].
  49. S. Rosswog et al., Astron. Astrophys. 341, 499 (1999).
  50. M. Eichler, A. Arcones, A. Kelic, O. Korobkin, K. Langanke, T. Marketin, G. Martinez-Pinedo, I. Panov, T. Rauscher, S. Rosswog, C. Winteler, N. T. Zinner, and F.-K. Thielemann, Astrophys. J. 808, 30 (2015).
  51. P. Dimitriou, I. Dillmann, B. Singh, V. Piksaikin, et al., Nucl. Data Sheets 3, 144 (2021).
  52. M. R. Mumpower, R. Surman, G. C. McLaughlin, and A. Aprahamian, Prog. Part. Nucl. Phys. 86, 86 (2016).

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (136KB)
3.

Download (218KB)
4.

Download (114KB)

Copyright (c) 2023 Pleiades Publishing, Ltd.