BOSE–EINSTEIN CONDENSATION AND MUON PRODUCTION IN ULTRA-HIGH ENERGY COSMIC RAY PARTICLE COLLISIONS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Collisions of cosmic ray particles with ultra-high initial energies with nuclei in the atmosphere open a wide room for appearing of the novel dynamical features for multiparticle production processes. In particular, the laser-like behavior of pions driven by Bose–Einstein condensation would result in the shift to larger multiplicities and, as consequence, could provide, in general, the enhanced yield of cosmic muons. In the present work the critical value of the space charged particle density for onset of Bose–Einstein condensation of the boson (pion) wave-packets into the same wave-packet state is estimated within the model with complete multiparticle symmetrization for the energy domain corresponding to the ultra-high energy cosmic rays (UHECR). Energy dependence of mean density of charged pions is evaluated for the cases of absence of the Bose–Einstein effects and for presence of laser-like behavior of pions. The possible influence of the Bose–Einstein condensation is discussed for the muon production inUHECRparticle collisions with the atmosphere.

About the authors

V. A. Okorokov

National Research Nuclear University MEPhI

Email: VAOkorokov@mephi.ru
Moscow, Rus

References

  1. V. A. Okorokov, Phys. At. Nucl. 82, 838 (2019).
  2. A. A. Petrukhin, Nucl. Instrum. Methods Phys. Res. A742, 228 (2014).
  3. H. P. Dembinski, J. C. Arteaga-Velazquez, L. Cazon, R. Conceicao, J. Gonzalez, Y. Itow, D. Ivanov, N. N. Kalmykov, I. Karpikov, S. Muller, T. Pierog, F. Riehn, M. Roth, T. Sako, D. Soldin, R. Takeishi, et al., EPJ Web Conf. 210, 02004 (2019).
  4. S. Baur, H. Dembinski, M. Perlin, T. Pierog, R. Ulrich, and K. Werner, Phys. Rev. D 107, 094031 (2023).
  5. A. Coleman, J. Eser, E. Mayotte, F. Saraziny, F. G. Schroder, D. Soldin, T. M. Venters, R. Aloisio, J. Alvarez-Muniz, R. Alves Batista, D. Bergman, M. Bertaina, L. Caccianiga, O. Deligny, H. P. Dembinski, P. B. Denton, et al., Astropart. Phys. 149, 102819 (2023).
  6. Л. Д. Ландау, Е. М. Лифшиц, Теоретическая физика: учеб. пособие для вузов,т.V,Статистическая физика, ч. 1 (Наука, Москва, 1976), с. 203; т. IX, Статистическая физика. ч. 2 (Наука, Москва, 1978), с. 124; K. Huang, Statistical mechanics (J. Wiley and Sons, N. J., 1987), с. 287.
  7. Д. П. Зубарев. В сб.: Физическая энциклопедия (Большая российская энциклопедия, 1988), т. 1, с. 219.
  8. D. Anchishkin, V. Gnatovskyy, D. Zhuravel, V. Karpenko, I. Mishustin, and H. Stoecker, Universe 9, 411 (2023).
  9. F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Rev. Mod. Phys. 71, 463 (1999); Y. Castin, cond-mat/0105058.
  10. W. Ketterle and N. J. van Druten, Phys. Rev. A 54, 656 (1996).
  11. S. Pratt, Phys. Lett. B 301, 159 (1993).
  12. T. Csorgo and J. Zimanyi, Phys. Rev. Lett. 80, 916 (1998).
  13. J. Zimanyi and T. Csorgo, Heavy Ion Phys. 9, 241 (1999).
  14. R. L. Workman, V. D. Burkert, V. Crede, E. Klempt, U. Thoma, L. Tiator, K. Agashe, G. Aielli, B. C. Allanach, C. Amsler, M. Antonelli, E. C. Aschenauer, D. M. Asner, H. Baer, Sw. Banerjee, R. M. Barnett, et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022).
  15. V. A. Okorokov, arXiv: 2309.06411 [hep-ph].
  16. В. А. Окороков, ЯФ 81, 481 (2018) [Phys. At. Nucl. 81, 508 (2018)].
  17. K. Greisen, Phys. Rev. Lett. 16, 748 (1966); Г. Т. Зацепин, В. А. Кузьмин, Письма в ЖЭТФ 4, 114 (1966) [JETP Lett. 4, 78 (1966)].
  18. V. A. Okorokov, Adv. High Energy Phys. 2016, 5972709 (2016).
  19. J. Cleymans, H. Oeschler, K. Redlich, and S. Wheaton, Phys. Rev. C 73, 034905 (2006).
  20. E. K. G. Sarkisyan, A. N. Mishra, R. Sahoo, and A. S. Sakharov, Phys. Rev. D 93, 054046 (2016).
  21. J. F. Grosse-Oetringhaus and K. Reygers, J. Phys. G: Nucl. Part. Phys. 37, 083001 (2010).
  22. I. M. Dremin and J. W. Gary, Phys. Lett. B 459, 341 (1999).
  23. I. M. Dremin and J. W. Gary, Phys. Rev. 349, 301 (2001).
  24. A. Heister, S. Schael, R. Barate, R. Bruneli`ere, I. De Bonis, D. Decamp, C. Goy, S. Jezequel, J.-P. Lees, F. Martin, E. Merle, M.-N. Minard, B. Pietrzyk, B. Trocme, S. Bravo, M. P. Casado, et al. (ALEPH Collab.), Eur. Phys. J. C 35, 457 (2004).
  25. E. Abbas, B. Abelev, J. Adam, D. Adamova, A. M. Adare, M. M. Aggarwal, G. Aglieri Rinella, M. Agnello, A. G. Agocs, A. Agostinelli, Z. Ahammed, A. Ahmad Masoodi, N. Ahmad, S. U. Ahn, S. A. Ahn, I. Aimo, et al. (ALICE Collab.), Phys. Lett. B 726, 610 (2013).
  26. V. A. Okorokov, Adv. High Energy Phys. 2015, 790646 (2015).
  27. A. Abada, M. Abbrescia, S. S. AbdusSalam, I. Abdyukhanov, J. Abelleira Fernandez, A. Abramov, M. Aburaia, A. O. Acar, P. R. Adzic, P. Agrawa, J. A. Aguilar-Saavedra, J. J. Aguilera-Verdugo, M. Aiba, I. Aichinger, G. Aielli, A. Akay, et al. (FCC Collab.), Eur. Phys. J. Spec. Top. 228, 1109 (2019).
  28. A. Abada, M. Abbrescia, S. S. AbdusSalam, I. Abdyukhanov, J. Abelleira Fernandez, A. Abramov, M. Aburaia, A. O. Acar, P. R. Adzic, P. Agrawa, J. A. Aguilar-Saavedra, J. J. Aguilera-Verdugo, M. Aiba, I. Aichinger, G. Aielli, A. Akay, et al. (FCC Collab.), Eur. Phys. J. Spec. Top. 228, 755 (2019).
  29. J. Bl¨umer, R. Engel, and J. R. H¨orandel, Prog. Part. Nucl. Phys. 63, 293 (2009).
  30. P. Lipari, Phys. Rev. D 103, 103009 (2021); N. Arsene, Universe 7, 321 (2021).
  31. A. Aab, P. Abreu, M. Aglietta, M. Ahlers, E. J. Ahn, I. Al Samarai, I. F. M. Albuquerque, I. Allekotte, J. Allen, P. Allison, A. Almela, J. Alvarez Castillo, J. Alvarez-Muniz, R. Alves Batista, M. Ambrosio, A. Aminaei, et al. (Pierre Auger Collab.), Phys. Rev. D 90, 012012 (2014); Phys. Rev. D 90, 039904 (Addendum) (2014); Phys. Rev. D 92, 019903 (Erratum) (2015).
  32. J. Adam, D. Adamova, M. M. Aggarwal, G. Aglieri Rinella, M. Agnello, N. Agrawal, Z. Ahammed, S. Ahmad, S. U. Ahn, S. Aiola, A. Akindinov, S. N. Alam, D. Aleksandrov, B. Alessandro, D. Alexandre, R. Alfaro Molina, et al. (ALICE Collab.), Phys. Rev. C 93, 054908 (2016).
  33. V. A. Okorokov, J. Phys.: Conf. Ser. 1690, 012006 (2020); Phys. At. Nucl. 86, 742 (2023).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences