KINEMATIC DESCRIPTION OF ALIGNMENT EFFECT IN COSMIC RAYS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The important role of kinematic constraints for the origin of the alignment of hadron and photon families observed by the Pamir collaboration in emulsion experiments with cosmic rays is discussed. Within the framework of the suggested approach it is shown that the high degree of alignment of the interaction products of the target nuclei and cosmic rays can be a consequence of the selection procedure of the most energetic clusters of particles together with the law of conservation of transverse momentum. The obtained results correctly describe the experimental data for three energetic centers and are also close enough to the measurements in the case of four and five clusters, which indicates encouraging prospects for the proposed method of explaining the alignment phenomenon.

About the authors

I. P. Lokhtin

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University

Email: igor.lokhtin@cern.ch
Moscow, Russia

A. V. Nikolskii

JINR

Email: alexn@theor.jinr.ru
Bogoliubov Laboratory of Theoretical Physics Dubna, Russia

A. M. Snigirev

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University; JINR

Email: snig@mail.cern.ch
Bogoliubov Laboratory of Theoretical Physics Moscow, Russia; Dubna, Russia

References

  1. Pamir Collab. (A. Borisov et al.), in Proceedings of the 4th International Symposium on Very High Energy Cosmic Ray Interactions, Beijing, Ed. by D. Linkai (1986), p. 4.
  2. Pamir Collab., in Proceedings of the 21st International Cosmic Ray Conference, Adelaide, Australia, 1989, Ed. by R. J. Protheroe (Univ. of Adelaide, Australia,1990), p. 227.
  3. S. A. Slavatinsky, in Proceedings of the 5th International Symposium on Very High Energy Cosmic Ray Interactions, Lodz, Poland, 1988, Ed. by M. Giler (Univ. of Lodz, Poland, 1989), p. 90.
  4. Сотрудничество “Памир” (Л. Т. Барадзей и др.), Изв. АН СССР. Сер. физ. 50, 2125 (1986).
  5. J. N. Capdevielle, J. Phys. G 14, 503 (1988).
  6. V. V. Kopenkin, A. K. Managadze, I. V. Rakobolskaya, and T. M. Roganova, Phys. Rev. D 52, 2766 (1995).
  7. F. Halzen and D. A. Morris, Phys. Rev. D 42, 1435 (1990).
  8. В. В. Копенкин, А. К. Манагадзе, И. В. Ракобольская, Т. М. Роганова, Изв. РАН. Сер. физ. 58, 13 (1994).
  9. В. И. Галкин, А. К. Манагадзе, В. И. Оседло, Т. М. Роганова, Г. Шозиёев, Вестн. Моск. ун-та. Сер. 3. Физ. Астрон., № 6, 34 (2003).
  10. R. A. Mukhamedshin, JHEP 0505, 049 (2005).
  11. I. P. Lokhtin, A. K. Managadze, L. I. Sarycheva, and M. Snigirev, Eur. Phys. J. C 44, 51 (2005).
  12. A. De Roeck, I. P. Lokhtin, A. K. Managadze, L. I. Sarycheva, and A. M. Snigirev, in Proceeding of the 13th International Conference on Elastic and Diffractive Scattering (Blois Workshop) Moving Forward into the LHC Era, CERN, Geneva, Switzerland, 2009, Ed. by M. Deile, D. d’Enterria, and A. De Roeck (Verlag Deutsches Elektronen-Synchrotron, DESY, Hamburg, 2010), p. 308; arXiv: 1002.3527 [hep-ph].
  13. PHOBOS Collab., Phys. Rev. C 81, 024804 (2010).
  14. CMS Collab. (V. Khachatryan et al.), JHEP 1009, 091 (2010).
  15. R. A. Mukhamedshin, Eur. Phys. J. C 60, 345 (2009).
  16. И. П. Лохтин, А. К. Манагадзе, А. М. Снигирев, ЯФ 76, 645 (2013) [Phys. At. Nucl. 76, 602 (2013)].
  17. I.P. Lokhtin, A.K. Managadze, A.M. Snigirev, Phys. Atom. Nucl. 76, 602 (2013)
  18. G. Eyyubova, V. L. Korotkikh, I. P. Lokhtin, S. V. Petrushanko, A. M. Snigirev, L. V. Bravina, and E. E. Zabrodin, Phys. Rev. C 91, 064907 (2015).
  19. R. A. Mukhamedshin, Eur. Phys. J. C 82, 155 (2022).
  20. I. P. Lokhtin, A. V. Nikolskii, and A. M. Snigirev, Eur. Phys. J. C 83, 324 (2023).
  21. T. Sjostrand, Comput. Phys. Commun. 135, 238 (2001).
  22. I. P. Lokhtin et al., Comput. Phys. Commun. 180, 779 (2009).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences