Perspectives of Inorganic Scintillator GAGG Application for Precision Electromagnetic Calorimetry

封面

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Scintillation crystals Gd
Al
Ga
O
 (GAGG) are considered for the application in ionizing-radiation detectors because of their high radiation resistance, density and light yield. These crystals can be used in addition to lead tungstate (PbWO
 or PWO) crystals for the development of a new generation electromagnetic calorimeter with good spatial and energy resolutions in a broad energy range. PWO crystals enable an accurate detection of high energy photons, while the addition of GAGG crystals makes it possible to precisely measure photon energies down to a few MeV units. Different options of composite electromagnetic calorimeter based on PWO and GAGG crystals are considered to optimize spatial and energy resolutions in a broad energy range (from 1 MeV to 100 GeV). The optimization is based on Geant4 simulations taking into account light collection as well as using different photodetectors and noise of electronics. The simulations are verified with the help of light yield measurements of GAGG samples obtained using radioactive sources and test beam measurements of PWO based photon spectrometer of the ALICE experiment at CERN.

作者简介

D. Averyanov

NRC ‘‘Kurchatov Institute’’; Moscow Institute of Physics and Technology (National Research University)

Email: daver99@yandex.ru
Moscow, Russia; Dolgoprudny, Russia

D. Blau

NRC ‘‘Kurchatov Institute’’; Moscow Institute of Physics and Technology (National Research University)

Email: daver99@yandex.ru
Moscow, Russia; Dolgoprudny, Russia

E. Tsyvkunova

Moscow Institute of Physics and Technology (National Research University)

编辑信件的主要联系方式.
Email: daver99@yandex.ru
Moscow, Russia

参考

  1. G. Dellacasa et al. (ALICE Collab.), CERN-LHCC-99-04.
  2. ALICE Collab., J. Phys. G: Nucl. Part. Phys. 32, 1295 (2006).
  3. CMS Collab., J. Phys. G: Nucl. Part. Phys. 34, 995 (2007).
  4. CALET Collab., Nucl. Phys. B Proc. Suppl. 256–257, 225 (2014).
  5. S. Acharya et al. (ALICE Collab.), JINST 14, P05025 (2019).
  6. M. M. Aggarwal et al. (ALICE Collab.), Phys. Lett. B 754, 235 (2016).
  7. A. Adare et al. (PHENIX Collab.), Phys. Rev. C 94, 064901 (2016).
  8. R. H. Brown and R. Q. Twiss, Nature 177, 27 (1956).
  9. M. M. Aggarwal et al. (WA98 Collab.), Phys. Rev. Lett. 93, 022301 (2004).
  10. F. Low, Phys. Rev. 110, 974 (1958).
  11. P. Abreu et al. (The DELPHI Collab.), Eur. Phys. J. C 47, 273 (2006).
  12. J. Antos et al., Z. Phys. C 59, 547 (1993).
  13. https://en.newpiezo.com/products/scintillation_ele- ments/
  14. T. Furuno et al., JINST 16, P10012 (2021).
  15. K. Kamada, T. Yanagida, et al., IEEE Trans. Nucl. Sci. 59(5), 2112 (2015).
  16. https://www.crytur.cz/materials/
  17. В. Н. Евдокимов и др., Препринт 86-34, ИФВЭ (Серпухов, 1986).
  18. S. Agostinelli et al. (Geant4 Collab.), Nucl. Instrum. Methods Phys. Res. A 506, 250 (2003).
  19. D. V. Aleksandrov et al., Nucl. Instrum. Methods Phys. Res. A 550, 169 (2005).
  20. C. W. Fabjan et al. (ALICE Collab.), J. Phys. G 32, 1295 (2006).
  21. J. E. Gaiser, SLAC-R-255 (1982).

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2023