Elliptic Flow for Neutral Pions in the Asymmetric Collision System at GeV

详细

Elliptic flow is among basic observables that characterize collective effects at the initial stage of formation of quark–gluon plasma in collisions of ultrarelativistic nuclei. The yields of neutral pions are measurable up to high transverse-momentum values; therefore, measurement of the elliptic flow for neutral pions is an efficient means for studying quark–gluon plasma. Measurement of the elliptic flow in asymmetric collision systems makes it possible to study the dependence of the elliptic flow on the initial geometry of the system. Two procedures for measuring the elliptic flow for neutral pions in the  asymmetric collision system at the energy of  GeV are considered.

作者简介

E. Bannikov

Peter the Great St. Petersburg Polytechnic University

Email: bannikov.ev.21@gmail.com
St. Petersburg, Russia

A. Berdnikov

Peter the Great St. Petersburg Polytechnic University

Email: bannikov.ev.21@gmail.com
St. Petersburg, Russia

Ya. Berdnikov

Peter the Great St. Petersburg Polytechnic University

Email: bannikov.ev.21@gmail.com
St. Petersburg, Russia

D. Kotov

Peter the Great St. Petersburg Polytechnic University

Email: bannikov.ev.21@gmail.com
St. Petersburg, Russia

Yu. Mitrankov

Peter the Great St. Petersburg Polytechnic University

Email: bannikov.ev.21@gmail.com
St. Petersburg, Russia

M. Mitrankova

Peter the Great St. Petersburg Polytechnic University

Email: bannikov.ev.21@gmail.com
St. Petersburg, Russia

D. Larionova

Peter the Great St. Petersburg Polytechnic University

编辑信件的主要联系方式.
Email: bannikov.ev.21@gmail.com
St. Petersburg, Russia

参考

  1. H. Buesching et al., Nucl. Part. Phys. 31, 473 (2005).
  2. R. Seto, Act. Phys. Pol. B 36, 525 (2005).
  3. M. L. Miller, K. Reygers, S. J. Sanders, and P. Steinberg, Ann. Rev. Nucl. Part. Sci. 57, 205 (2007).
  4. PHENIX Collab. (K. Adcox, S. S. Adler, S. Afanasiev, C. Aidala, N. N. Ajitanand, Y. Akiba, A. Al-Jame, J. Alexander, R. Amirikas, K. Aoki, L. Aphecetche, Y. Arai, R. Armendariz, S. H. Aronson, R. Averbeck, T. C. Awes, et al.), Nucl. Phys. A 757, 184 (2005).
  5. G. Policastro, D. T. Son, and A. O. Starinets, Phys. Rev. Lett. 87,081601 (2001).
  6. A. Poskanzer and S. Voloshin, Phys. Rev. C 58, 1671 (1998).
  7. A. Adare, S. Afanasiev, C. Aidala, N. N. Ajitanand, Y. Akiba, H. Al-Bataineh, J. Alexander, A. Angerami, K. Aoki, N. Apadula, Y. Aramaki, E. T. Atomssa, R. Averbeck, T. C. Awes, B. Azmoun, V. Babintsev, et al., Phys. Rev. C 88, 064910 (2013).
  8. R. Snellings, New J. Phys. 13, 055008 (2011).
  9. K. Adcox, S. S. Adler, M. Aizama, N. N. Ajitanand, Y. Akiba, H. Akikawa, J. Alexander, A. Al-Jamel, M. Allen, G. Alley, R. Amirikas, L. Aphecetche, Y. Arai, J. B. Archuleta, J. R. Archuleta, R. Armendariz, et al., Nucl. Instrum. Methods A 499, 469 (2003).
  10. L. Aphecetche, T. C. Awes, J. Banning, S. Bathe, A. Bazilevsky, S. Belikov, S. T. Belyaev, C. Blume, M. Bobrek, D. Bucher, V. Bumazhnov, H. Büsching, S. Chernichenkov, V. Cianciolo, M. Cutshaw, D. G. D’Enterria, et al., Nucl. Instrum. Methods A 499, 521 (2003).
  11. A. Adare et al. (PHENIX Collab.), Phys. Rev. C 78, 044902 (2008).
  12. Drijard, Daniel, H. G. Fischer, and T. Nakada, Nucl. Instrum. Methods A 225, 367 (1984).
  13. S. Afanasiev et al. (PHENIX Collab.), Phys. Rev. C 80, 024909 (2009).
  14. N. Borghini and J.-Y. Ollitrault, Phys. Rev. C 70, 064905 (2004).
  15. J. Barrette, R. Bellwied, S. Bennett, P. Braun-Munzinger, W. C. Chang, W. E. Cleland, M. Clemen, J. Cole, T. M. Cormier, G. David, J. Dee, O. Dietzsch, M. Drigert, J. R. Hall, T. K. Hemmick, N. Herrmann, et al., Phys. Rev. C 56, 2336 (1997).
  16. Iu. Mitrankov, E. V. Bannikov, A. Ya. Berdnikov, Ya. A. Berdnikov, and D. O. Kotov, J. Phys.: Conf. Ser. 2103,012133(2021).
  17. A. Adare et al. (PHENIX Collab.), Phys. Rev. C 94, 064901 (2016).
  18. M. Oldenburg, in Proceedings of the 14th Topical Conference on Hadron Collider Physics (2002), p. 215.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2023