Quark–Gluon String Model and Its Application to Inelastic C Interactions at a Momentum of 4.2 GeV/ per Nucleon
- Authors: Bekmirzaev R.N.1, Sultanov M.U.2, Yuldashev S.K.3
-
Affiliations:
- Jizzakh State Pedagogical University
- State Architecture and Civil Engineering Institute
- Samarkand State University
- Issue: Vol 86, No 1 (2023)
- Pages: 234-239
- Section: МАТЕРИАЛЫ LXXII МЕЖДУНАРОДНОЙ КОНФЕРЕНЦИИ “ЯДРО-2022: ФУНДАМЕНТАЛЬНЫЕ ВОПРОСЫ И ПРИЛОЖЕНИЯ”. Элементарные частицы и поля. Эксперимент
- Published: 01.03.2023
- URL: https://cardiosomatics.ru/0044-0027/article/view/674767
- DOI: https://doi.org/10.31857/S0044002723010105
- EDN: https://elibrary.ru/RAJBWU
- ID: 674767
Cite item
Abstract
The fundamentals of the quark–gluon string (QGS) model for describing inelastic interactions of light nuclei at high energies are outlined. Basic ideas of the QGS model, which include the formation of quark–gluon strings, the choice of their limited number, and a simulation of breaking of a string with hadron formation, are presented. The results of theoretical calculations based on the QGS model are compared with experimental data obtained for inelastic dC interactions. A brief account of the procedure for obtaining these experimental data is given. An analysis and a comparison of model results and experimental information shows that the QGS model reproduces faithfully the interactions of colliding light nuclei at momenta around 4.2 GeV/c and is applicable up to nuclear-interaction energies corresponding to 10 GeV per nucleon.
About the authors
R. N. Bekmirzaev
Jizzakh State Pedagogical University
Email: bekmirzaev@mail.ru
130100, Jizzakh, Uzbekistan
M. U. Sultanov
State Architecture and Civil Engineering Institute
Email: bekmirzaev@mail.ru
Samarkand, Uzbekistan
S. K. Yuldashev
Samarkand State University
Author for correspondence.
Email: bekmirzaev@mail.ru
Samarkand, Uzbekistan
References
- Н. С. Амелин, Л. В. Бравина, ЯФ 51, 211 (1990).
- С. Н. Ермаков, Г. А. Михайлов, Курс статистического моделирования (Наука, Москва, 1976).
- H.-U. Bengtsson and G. Ingelman, Comput. Phys. Commun. 34, 251 (1985).
- R. P. Feynman and R. D. Field, Nucl. Phys. B 136, 1 (1978).
- Н. С. Амелин, В. С. Барашенков, Н. В. Славин, ЯФ 40, 1650 (1984).
- М. У. Султанов, А. А. Усаров, У. У. Тухтаев, А. А. Кодиров, К. Х. Яхшибоев, Л. Т. Нурмуродов, Науч. вестн. СамГУ, № 1(119), 112 (2020).
- L. Simiĉ, J. Backoviĉ, H. N. Agakishiyev, E. N. Kladnitskaya, and A. P. Cheplakov, Z. Phys. C 48, 577 (1990).
- M. U. Sultanov, F. Daminov, S. S. Aliqulov, R. N. Bekmirzaev, X. Bekmirzayeva, and Sh. Xolbutayev, in Proceedings of the International Conference on Nuclear Science and Its Application, Samarkand, Uzbekistan, Sept. 25–28, 2012, p. 131.
Supplementary files
