Diagnostics of the structure of a nuclear power plant unit using muonography

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In 2022, a hybrid muon hodoscope with a sensitive area of 3 × 3 m2 for studying the internal structure of large-scale objects using the muonography method was created at MEPhI. The hodoscope’s detecting system has a hybrid structure. It consists of a scintillation strip detector and a drift tube detector and is designed to record tracks of charged particles. The muonography method is based on the use of cosmic ray muons as penetrating radiation for “translucence” (analogous to radiography) of large-scale objects. Experimental studies of the internal structure of the Kalinin NPP power unit using the muonography method were carried out in 2022–2023. The paper presents a brief description of the design of a hybrid muon hodoscope, as well as the results of an experiment on diagnostics of the power unit structure using this method, which was carried out during the scheduled power unit’s maintenance. The purpose of the experiment was to develop a method for real-time detection of changes in the structure of a reactor unit during its maintenance.

Full Text

Restricted Access

About the authors

N. A. Pasyuk

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Author for correspondence.
Email: NAPasyuk@mephi.ru
Russian Federation, Moscow

R. R. Alyev

Branch JSC “Rosenergoatom Concern” “Kalinin Nuclear Power Plant”

Email: NAPasyuk@mephi.ru
Russian Federation, Udomlya

N. N. Davidenko

All-Russian Research Institute for Nuclear Power Plants Operation

Email: NAPasyuk@mephi.ru
Russian Federation, Moscow

S. M. Kiselev

Branch JSC “Rosenergoatom Concern” “Kalinin Nuclear Power Plant”

Email: NAPasyuk@mephi.ru
Russian Federation, Udomlya

A. S. Kozhin

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute); National Research Center “Kurchatov Institute” — IHEP

Email: NAPasyuk@mephi.ru
Russian Federation, Moscow; Protvino

K. G. Kompaniets

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Email: NAPasyuk@mephi.ru
Russian Federation, Moscow

Yu. N. Konev

All-Russian Research Institute for Nuclear Power Plants Operation

Email: NAPasyuk@mephi.ru
Russian Federation, Moscow

S. V. Oleinik

All-Russian Research Institute for Nuclear Power Plants Operation

Email: NAPasyuk@mephi.ru
Russian Federation, Moscow

A. A. Petrukhin

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Email: NAPasyuk@mephi.ru
Russian Federation, Moscow

R. M. Fakhrutdinov

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute); National Research Center “Kurchatov Institute” — IHEP

Email: NAPasyuk@mephi.ru
Russian Federation, Moscow; Protvino

M. Y. Tselinenko

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Email: NAPasyuk@mephi.ru
Russian Federation, Moscow

V. V. Shutenko

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Email: NAPasyuk@mephi.ru
Russian Federation, Moscow

I. I. Yashin

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Email: IIYashin@mephi.ru
Russian Federation, Moscow

References

  1. N. Kume, H. Miyadera, C. L. Morris, J. Bacon, K. N. Borozdin, J. M. Durham, K. Fuzita, E. Guardincerri, M. Izumi, K. Nakayama, M. Saltus, T. Sugita, K. Takakura, and K. Yoshioka, JINST 11, P09008 (2016); http://doi.org/10.1088/1748-0221/11/09/P09008
  2. H. Fujii, K. Hara, S. Hashimoto, K. Hayashi, F. Ito, H. Kakuno, H. Kodama, K. Nagamine, K. Sato, K. Satoh, S. Kim, A. Suzuki, T. Sumiyoshi, K. Takahashi, Y. Takahashi, F. Takasaki, S. Tanaka, and S. Yamashita, Prog. Theor. Exp. Phys. 2019, 053C01 (2019); http://doi.org/10.1093/ptep/ptz040
  3. H. Fujii, M. Gi, K. Hara, S. Hashimoto, K. Hayashi, H. Kakuno, H. Kodama, M. Mizokami, S. Mizokami, K. Nagamine, K. Sato, S. Sekita, H. Shirai, S. Kim, T. Sumiyoshi, A. Suzuki, Y. Takada, K. Takahashi, Y. Takahashi, F. Takasaki, D. Yamada, and S. Yamashita, Prog. Theor. Exp. Phys. 2021, 023C01 (2021); http://doi.org/10.1093/ptep/ptaa137
  4. J. Perry, M. Azzouz, J. Bacon, K. Borozdin, E. Chen, J. Fabritius II, E. Milner, H. Miyadera, C. Morris, J. Roybal, Z. Wang, B. Busch, K. Carpenter, A. A. Hecht, K. Masuda, C. Spore, N. Toleman, D. Aberle, and Z. Lukic, J. Appl. Phys. 113, 184909 (2013); http://doi.org/10.1063/1.4804660
  5. K. Bridges, J. Coleman, R. Collins, J. Dasari, G. Holt, C. Metelko, A. Morgan, M. Murdoch, Y. Schnellbach, I. Tsurin, R. W. Mills, M. Ryan, G. Edwards, and A. Roberts, JINST 18, P02024 (2023); http://doi.org/10.1088/1748-0221/18/02/P02024
  6. B. Lefevre, H. Gomez, S. Procureur, D. Attie, L. Gallego, P. Gonzales, M. Lehuraux, B. Lesage, I. Mandjavidze, P. Mas, and D. Pomarede, EPJ Web Conf. 288, 07001 (2023); https://doi.org/10.1051/epjconf/202328807001
  7. S. Procureur, D. Attie, L. Gallego, H. Gomez, P. Gonzales, B. Lefevre, M. Lehuraux, B. Lesage, I. Mandjavidze, P. Mas, and D. Pomarede, Sci. Adv. 9, eabq8431 (2023); http://doi.org/10.1126/sciadv.abq8431
  8. A. Clarkson, D. J. Hamilton, M. Hoek, D. G. Ireland, J. R. Johnstone, R. Kaiser, T. Keri, S. Lumsden, D. F. Mahon, B. McKinnon, M. Murray, S. Nutbeam-Tuffs, C. Shearer, G. Yang, and C. Zimmerman, JINST 10, P03020 (2015); http://doi.org/10.1088/1748-0221/10/03/P03020
  9. J. M. Durham, D. Poulson, J. Bacon, D. L. Chichester, E. Guardincerri, C. L. Morris, K. Plaud-Ramos, W. Schwendiman, J. D. Tolman, and P. Winston, Phys. Rev. Applied. 9, 044013 (2018); http://doi.org/10.1103/PhysRevApplied.9.044013
  10. International Atomic Energy Agency, Nuclear Technology Review (Vienna, 2019); https://www.iaea.org/sites/default/files/gc/gc63-inf2.pdf
  11. International Atomic Energy Agency, Muon Imaging: Present Status and Emerging Applications (Vienna, 2022); https://www-pub.iaea.org/MTCD/Publications/PDF/TE-2012web.pdf
  12. Н. С. Барбашина, В. В. Борог, Р. П. Кокоулин, К. Г. Компаниец, А. А. Петрухин, Д. А. Тимашков, В. В. Шутенко, И. И. Яшин, Патент RU2406919C2 от 20.12.2010 на сайте Федерального института промышленной собственности, URL: https://patentimages.storage.googleapis.com/4e/6d/b5/12929dad5e5150/RU2406919C2.pdf
  13. И. И. Астапов, М. М. Каверзнев, Ю. Н. Конев, А. А. Петрухин, С. С. Хохлов, И. И. Яшин, Патент RU2761333C1 от 07.12.2021 на сайте Федерального института промышленной собственности, URL: https://www1.fips.ru/ofpstorage/Doc/IZPM/RUNWC1/000/000/002/761/333/%D0%98%D0%97-02761333-00001/document.pdf
  14. N. A. Pasyuk, A. A. Borisov, K. G. Kompaniets, A. S. Kozhin, R. M. Fakhrutdinov, M. Yu. Tselinenko, V. V. Shutenko, and I. I. Yashin, Instrum. Exp. Tech. 67, 219 (2024); http://doi.org/10.1134/S0020441224700489
  15. N. A. Pasyuk, K. G. Kompaniets, A. A. Petrukhin, M. Yu. Tselinenko, V. V. Shutenko, and I. I. Yashin, Instrum. Exp. Tech. 67, 672 (2024); http://doi.org/10.1134/S0020441224701069
  16. N. A. Pasyuk, N. N. Davidenko, A. S. Kozhin, K. G. Kompaniets, Yu. N. Konev, S. V. Oleinik, A. A. Petrukhin, R. M. Fakhrutdinov, M. Yu. Tselinenko, D. V. Shudra, V. V. Shutenko, and I. I. Yashin, Tech. Phys. 69, 1296 (2024); http://doi: 10.61011/TP.2024.08.59019.40-24
  17. Н. А. Пасюк, Р. Р. Алыев, Н. Н. Давиденко, С. М. Киселев, А. С. Кожин, К. Г. Компаниец, Ю. Н. Конев, С. В. Олейник, А. А. Петрухин, Р. М. Фахрутдинов, М. Ю. Целиненко, В. В. Шутенко, И. И. Яшин, ЖТФ 95, 179 (2025); http://doi: 10.61011/JTF.2025.01.59477.251-24
  18. E. I. Yakovleva, V. A. Khomyakov, and S. S. Khokhlov, Bull. Lebedev Phys. Inst. 43, 298 (2016); https://doi.org/10.3103/S1068335616100031

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Photograph of a hybrid muon hodoscope.

Download (1MB)
3. Fig. 2. Placement of the hangar with the GMG relative to the power unit.

Download (923KB)
4. Fig. 3. Matrix of zenith-azimuth distribution of reconstructed particle tracks: a – experiment; b – model.

Download (572KB)
5. Fig. 4. Total matrix of the number of intersection points of tracks with the reference plane at a distance of 50 m from the detector.

Download (508KB)
6. Fig. 5. Simplified model of the power unit: 1 — HMG; 2 — reactor compartment casing walls; 3 — emergency cooling system; 4 — fuel assemblies; 5 — spent fuel pool; 6 — steam generator; 7 — containment; 8 — turbogenerator; 9 — upper platform of the machine room; 10 — machine room walls; 11 — pressure compensator; 12 — refuelling pool; 13 — reactor; 14 — main circulation pump.

Download (465KB)
7. Fig. 6. Model matrix of the distribution of the number of tracks (a) and the thickness of the substance (b) at a distance of 62 m from the center of the detector.

Download (843KB)
8. Fig. 7. Model difference matrix of the number of tracks (a) and substance thicknesses (b) at a distance of 62 m from the center of the detector: 1 — uranium in the spent fuel pool; 2, 3, 4 — water in the pools and reactor; 5, 6 — circulation pumps; 7 — block of protective pipes; 8 — turbogenerator.

Download (720KB)
9. Fig. 8. Experimental matrices for the density of reconstructed track points. a – Regular operation in autumn 2022; b – Regular operation in spring 2023; c – Fuel reloading in summer 2023; d – Fuel unloading in summer 2023; d – Regular operation in summer 2023.

Download (1MB)
10. Fig. 9. Matrices of relative deviations of the model from the experiment. a – Normal operation in autumn 2022; b – normal operation in spring 2023; c – fuel reloading in summer 2023; d – fuel unloading in summer 2023; d – normal operation in summer 2023.

Download (1MB)
11. Fig. 10. Experimental thickness matrices. a – Regular operation in autumn 2022; b – Regular operation in spring 2023; c – Fuel reloading in summer 2023; d – Fuel unloading in summer 2023; d – Regular operation in summer 2023.

Download (2MB)
12. Fig. 11. Difference matrix by the number of tracks. a – Spring 2023 minus Autumn 2022; b – fuel reloading 2023 minus Autumn 2022; c – fuel unloading 2023 minus Autumn 2022; d – Summer 2023 minus Autumn 2022; d – Spring 2023 minus Summer 2023.

Download (1MB)
13. Fig. 12. Difference matrix by thicknesses. a – Spring 2023 minus Autumn 2022; b – fuel reloading 2023 minus Autumn 2022; c – fuel unloading 2023 minus Autumn 2022; d – Summer 2023 minus Autumn 2022; d – Spring 2023 minus Summer 2023.

Download (1MB)
14. Fig. 13. Correlation of the matrix with the power unit diagram: 1 and 6 — crane; 2 — transport container; 3 — spent fuel pool; 4 — circulation pump; 5 — equipment; 7 — fuel assemblies in the spent fuel pool; 8 — block of protective tubes; 9 — refuelling pool; 10 — reactor cover; 11 — turbine of the machine room; 12 — reference plane; 13 — selected directions of particle tracks; 14 — detector.

Download (1MB)
15. Fig. 14. Daily difference matrix by the number of tracks.

Download (1MB)

Copyright (c) 2025 Russian Academy of Sciences