Antineutrino spectra of 235,238U and 239,241Pu taken from the Double Chooz experiment

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

235U, 238U, 239Pu and 241Pu antineutrino spectra were obtained from the measurement done by the near detector in Double Chooz experiment. Method of converting the experimental positron spectrum into the antineutrino one has been developed. The spectrum conversion function obtained from Monte Carlo calculations is used. The experimental antineutrino spectrum taken by this method corresponds to a certain fuel composition of a nuclear reactor core in parts of fission. It is possible to split the experimental antineutrino spectrum on nuclear fuel components spectra. Nuclear fuel individual isotope antineutrino spectra from uranium and plutonium were fitted by the calculated ones obtained by summation of individual fragment spectra. In the calculation, a strength function was used to describe the probability distribution of beta transitions for unknown fragments. The most accurate experimental cross sections of inverse beta decay reaction measured in a number of experiments are consistent with sections calculated on base of our experimental and calculated 235U, 238U, 239Pu and 241Pu antineutrino spectra.

Авторлар туралы

A. Vlasenko

Institute for Nuclear Research of the Russian Academy of Sciences; National Research Nuclear University MEPhI

Хат алмасуға жауапты Автор.
Email: ssilaeva@inr.ru
Ресей, Moscow; Moscow

S. Ingerman

Institute for Nuclear Research of the Russian Academy of Sciences

Email: ssilaeva@inr.ru
Ресей, Moscow

P. Naumov

Institute for Nuclear Research of the Russian Academy of Sciences

Email: ssilaeva@inr.ru
Ресей, Moscow

V. Sinev

Institute for Nuclear Research of the Russian Academy of Sciences; National Research Nuclear University MEPhI

Email: ssilaeva@inr.ru
Ресей, Moscow; Moscow

Әдебиет тізімі

  1. C. L. Cowan Jr., F. Reines, F. B. Harrison, H. W. Kruse, and A. D. McGuire, Science 124, 103 (1956); В. И. Копейкин, Л. А. Микаэлян, В. В. Синев, ЯФ 60, 230 (1997) [V. I. Kopeikin, L. A. Mikaelyan, and V. V. Sinev, Phys. At. Nucl. 60, 172 (1997)].
  2. В. В. Синев, ЯФ 76, 578 (2013) [V. V. Sinev, Phys. At. Nucl. 76, 537 (2013)]; А. П. Власенко, П. Ю. Наумов, С. В. Силаева, В. В. Синев, ЯФ 86, 24 (2023) [P. Naumov, S. Silaeva, V. Sinev, and A. Vlasenko, Phys. At. Nucl. 85, 690 (2022)]; arXiv: 2210.00836 [nucl-ex].
  3. H. de Kerret et al. (Double Chooz Collab.), JHEP 1811, 053 (2018).
  4. H. de Kerret, T. Abrahao, H. Almazan, et al. (Double Chooz Collaboration), Nature Physics 16, 558 (2020).
  5. P. Vogel, R. E. Schenter, F. M. Mann, and G. K. Schenter, Phys. Rev. C 24, 1543 (1981).
  6. P. M. Rubtsov, P. A. Ruzhansky, V. G. Alexankin, et al, Sov. J. Nucl. Phys. 46, 1028 (1987); V. G. Alexankin, S. V. Rodichev, P. M. Rubtsov, and P. A. Ruzhansky, in Proceedings of the International School LEWI-1990.
  7. T. A. Mueller, D. Lhuillier, M. Fallot, A. Letourneau, S. Cormon, M. Fechner, L. Giot, Th. Lasserre, J. Martino, G. Mention, A. Porta, and F. Yermia, Phys. Rev. C 83, 054615 (2011).
  8. K. Schreckenbach, G. Colvin, W. Gelletly, and F. von Feilitzsch, Phys. Lett. B 160, 325 (1985); A. Hahn, K. Schreckenbach, W. Gelletly, F. von Feilitzsch, G. Colvin, and B. Krusche, Phys. Lett. B 218, 365 (1989).
  9. Д. В. Попов, М. Д. Скорохватов, Письма в ЭЧАЯ 20, 5 (2023); V. Kopeikin, M. Skorokhvatov, and O. Titov, Phys. Rev. D 104, 071301 (2021); arXiv: 2103.01684 [nucl-ex].
  10. Y. Declais, H. de Kerret, B. Lefievre, M. Obolensky, A. Etenko, Yu. Kozlov, I. Machulin, V. Martemianov, L. Mikaelyan, M. Skorokhvatov, S. Sukhotin, and V. Vyrodov, Phys. Lett. B 338, 383 (1994).
  11. F. P. An et al. (Daya Bay Collab.), Chin. Phys. C 41, 013002 (2017).

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2024