Antineutrino spectra of 235,238U and 239,241Pu taken from the Double Chooz experiment

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

235U, 238U, 239Pu and 241Pu antineutrino spectra were obtained from the measurement done by the near detector in Double Chooz experiment. Method of converting the experimental positron spectrum into the antineutrino one has been developed. The spectrum conversion function obtained from Monte Carlo calculations is used. The experimental antineutrino spectrum taken by this method corresponds to a certain fuel composition of a nuclear reactor core in parts of fission. It is possible to split the experimental antineutrino spectrum on nuclear fuel components spectra. Nuclear fuel individual isotope antineutrino spectra from uranium and plutonium were fitted by the calculated ones obtained by summation of individual fragment spectra. In the calculation, a strength function was used to describe the probability distribution of beta transitions for unknown fragments. The most accurate experimental cross sections of inverse beta decay reaction measured in a number of experiments are consistent with sections calculated on base of our experimental and calculated 235U, 238U, 239Pu and 241Pu antineutrino spectra.

About the authors

A. P. Vlasenko

Institute for Nuclear Research of the Russian Academy of Sciences; National Research Nuclear University MEPhI

Author for correspondence.
Email: ssilaeva@inr.ru
Russian Federation, Moscow; Moscow

S. V. Ingerman

Institute for Nuclear Research of the Russian Academy of Sciences

Email: ssilaeva@inr.ru
Russian Federation, Moscow

P. Y. Naumov

Institute for Nuclear Research of the Russian Academy of Sciences

Email: ssilaeva@inr.ru
Russian Federation, Moscow

V. V. Sinev

Institute for Nuclear Research of the Russian Academy of Sciences; National Research Nuclear University MEPhI

Email: ssilaeva@inr.ru
Russian Federation, Moscow; Moscow

References

  1. C. L. Cowan Jr., F. Reines, F. B. Harrison, H. W. Kruse, and A. D. McGuire, Science 124, 103 (1956); В. И. Копейкин, Л. А. Микаэлян, В. В. Синев, ЯФ 60, 230 (1997) [V. I. Kopeikin, L. A. Mikaelyan, and V. V. Sinev, Phys. At. Nucl. 60, 172 (1997)].
  2. В. В. Синев, ЯФ 76, 578 (2013) [V. V. Sinev, Phys. At. Nucl. 76, 537 (2013)]; А. П. Власенко, П. Ю. Наумов, С. В. Силаева, В. В. Синев, ЯФ 86, 24 (2023) [P. Naumov, S. Silaeva, V. Sinev, and A. Vlasenko, Phys. At. Nucl. 85, 690 (2022)]; arXiv: 2210.00836 [nucl-ex].
  3. H. de Kerret et al. (Double Chooz Collab.), JHEP 1811, 053 (2018).
  4. H. de Kerret, T. Abrahao, H. Almazan, et al. (Double Chooz Collaboration), Nature Physics 16, 558 (2020).
  5. P. Vogel, R. E. Schenter, F. M. Mann, and G. K. Schenter, Phys. Rev. C 24, 1543 (1981).
  6. P. M. Rubtsov, P. A. Ruzhansky, V. G. Alexankin, et al, Sov. J. Nucl. Phys. 46, 1028 (1987); V. G. Alexankin, S. V. Rodichev, P. M. Rubtsov, and P. A. Ruzhansky, in Proceedings of the International School LEWI-1990.
  7. T. A. Mueller, D. Lhuillier, M. Fallot, A. Letourneau, S. Cormon, M. Fechner, L. Giot, Th. Lasserre, J. Martino, G. Mention, A. Porta, and F. Yermia, Phys. Rev. C 83, 054615 (2011).
  8. K. Schreckenbach, G. Colvin, W. Gelletly, and F. von Feilitzsch, Phys. Lett. B 160, 325 (1985); A. Hahn, K. Schreckenbach, W. Gelletly, F. von Feilitzsch, G. Colvin, and B. Krusche, Phys. Lett. B 218, 365 (1989).
  9. Д. В. Попов, М. Д. Скорохватов, Письма в ЭЧАЯ 20, 5 (2023); V. Kopeikin, M. Skorokhvatov, and O. Titov, Phys. Rev. D 104, 071301 (2021); arXiv: 2103.01684 [nucl-ex].
  10. Y. Declais, H. de Kerret, B. Lefievre, M. Obolensky, A. Etenko, Yu. Kozlov, I. Machulin, V. Martemianov, L. Mikaelyan, M. Skorokhvatov, S. Sukhotin, and V. Vyrodov, Phys. Lett. B 338, 383 (1994).
  11. F. P. An et al. (Daya Bay Collab.), Chin. Phys. C 41, 013002 (2017).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences