Elastic scattering of polarized protons on 3He nucleus within the Glauber model with spin dependence

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Differential cross sections and vector analyzing powers of elastic p3He scattering at energies 156Tp1000 MeV are calculated on the basis of the Glauber diffraction model with accounting of spin dependence of the NN-scattering amplitudes. Explicite formulae for all six invariant amplitudes of the p3He scattering for meachanisms of single-, double- and triple-scattering are obtained for the first time. A good agreement with the experimental data both for the differential cross sections and spin observables was found for scattering into the forward hemisphere. Furthermore, explicite formulae for the p3He scattering amplitudes with violation of the time-reversal invariance but conservation of P-parity are obtained and can these be used to test the T-invariance in this and others processes.

Sobre autores

M. Platonova

Lomonosov Moscow State University; Joint Institute for Nuclear Research

Autor responsável pela correspondência
Email: uzikov@jinr.ru

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University; Dzhelepov Laboratory of Nuclear Problems, Joint Institute for Nuclear Research

Rússia, Moscow; Dubna

N. Tursunbayev

Joint Institute for Nuclear Research

Email: uzikov@jinr.ru

Dzhelepov Laboratory of Nuclear Problems

Rússia, Dubna

Yu. Uzikov

Joint Institute for Nuclear Research; Lomonosov Moscow State University, Faculty of Physics; Dubna State University

Email: uzikov@jinr.ru

Dzhelepov Laboratory of Nuclear Problems, Joint Institute for Nuclear Research; Lomonosov Moscow State University, Faculty of Physics

Rússia, Dubna; Moscow; Dubna

Bibliografia

  1. M. N. Platonova and V. I. Kukulin, Phys. At. Nucl. 73, 86 (2010).
  2. M. N. Platonova and V. I. Kukulin, Phys. Rev. C 81, 014004 (2010), Phys. Rev. C 94, 069902 (Erratum) (2016), arXiv:1612.08694.
  3. A. A. Temerbayev and Y. N. Uzikov, Phys. Atom. Nucl. 78, 35 (2015).
  4. M. N. Platonova and V. I. Kukulin, Eur. Phys. J. A 56, 132 (2020), arXiv:1910.05722.
  5. D. K. Hasell et al., Phys. Rev. C 34, 236 (1986).
  6. R. Frascaria, D. Legrand, V. Comparat, M. Morlet, N. Marty, and A. Willis, Nucl. Phys. A 264, 445 (1976).
  7. G. Bizard and A. Osmont, Nucl. Phys. A 364, 333 (1981).
  8. Y. N. Uzikov and A. Temerbayev, Phys. Rev. C 92, 014002 (2015), arXiv:1506.08303.
  9. Y. N. Uzikov and J. Haidenbauer, Phys. Rev. C 94, 035501 (2016), arXiv:1607.04409.
  10. Y. N. Uzikov, J. Haidenbauer, and B. A. Prmantayeva, Phys. Rev. C 84, 054011 (2011), arXiv:1107.3906.
  11. L. A. Kondratyuk and M. Z. Shmatikov, Yad. Fiz. 38, 216 (1983).
  12. W. Czy˙z and L. Le’sniak, Phys. Lett. B 24, 227 (1967).
  13. R. A. Arndt, W. J. Briscoe, I. I. Strakovsky, and R. L. Workman, Phys. Rev. C 76, 025209 (2007), arXiv:0706.2195.
  14. M. Beyer, Nucl. Phys. A 560, 895 (1993), nucl-th/9302002.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024