Elastic scattering of polarized protons on 3He nucleus within the Glauber model with spin dependence

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Differential cross sections and vector analyzing powers of elastic p3He scattering at energies 156Tp1000 MeV are calculated on the basis of the Glauber diffraction model with accounting of spin dependence of the NN-scattering amplitudes. Explicite formulae for all six invariant amplitudes of the p3He scattering for meachanisms of single-, double- and triple-scattering are obtained for the first time. A good agreement with the experimental data both for the differential cross sections and spin observables was found for scattering into the forward hemisphere. Furthermore, explicite formulae for the p3He scattering amplitudes with violation of the time-reversal invariance but conservation of P-parity are obtained and can these be used to test the T-invariance in this and others processes.

About the authors

M. N. Platonova

Lomonosov Moscow State University; Joint Institute for Nuclear Research

Author for correspondence.
Email: uzikov@jinr.ru

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University; Dzhelepov Laboratory of Nuclear Problems, Joint Institute for Nuclear Research

Russian Federation, Moscow; Dubna

N. T. Tursunbayev

Joint Institute for Nuclear Research

Email: uzikov@jinr.ru

Dzhelepov Laboratory of Nuclear Problems

Russian Federation, Dubna

Yu. N. Uzikov

Joint Institute for Nuclear Research; Lomonosov Moscow State University, Faculty of Physics; Dubna State University

Email: uzikov@jinr.ru

Dzhelepov Laboratory of Nuclear Problems, Joint Institute for Nuclear Research; Lomonosov Moscow State University, Faculty of Physics

Russian Federation, Dubna; Moscow; Dubna

References

  1. M. N. Platonova and V. I. Kukulin, Phys. At. Nucl. 73, 86 (2010).
  2. M. N. Platonova and V. I. Kukulin, Phys. Rev. C 81, 014004 (2010), Phys. Rev. C 94, 069902 (Erratum) (2016), arXiv:1612.08694.
  3. A. A. Temerbayev and Y. N. Uzikov, Phys. Atom. Nucl. 78, 35 (2015).
  4. M. N. Platonova and V. I. Kukulin, Eur. Phys. J. A 56, 132 (2020), arXiv:1910.05722.
  5. D. K. Hasell et al., Phys. Rev. C 34, 236 (1986).
  6. R. Frascaria, D. Legrand, V. Comparat, M. Morlet, N. Marty, and A. Willis, Nucl. Phys. A 264, 445 (1976).
  7. G. Bizard and A. Osmont, Nucl. Phys. A 364, 333 (1981).
  8. Y. N. Uzikov and A. Temerbayev, Phys. Rev. C 92, 014002 (2015), arXiv:1506.08303.
  9. Y. N. Uzikov and J. Haidenbauer, Phys. Rev. C 94, 035501 (2016), arXiv:1607.04409.
  10. Y. N. Uzikov, J. Haidenbauer, and B. A. Prmantayeva, Phys. Rev. C 84, 054011 (2011), arXiv:1107.3906.
  11. L. A. Kondratyuk and M. Z. Shmatikov, Yad. Fiz. 38, 216 (1983).
  12. W. Czy˙z and L. Le’sniak, Phys. Lett. B 24, 227 (1967).
  13. R. A. Arndt, W. J. Briscoe, I. I. Strakovsky, and R. L. Workman, Phys. Rev. C 76, 025209 (2007), arXiv:0706.2195.
  14. M. Beyer, Nucl. Phys. A 560, 895 (1993), nucl-th/9302002.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences