Is It Possible to Estimate the Parameters of the 2D Evolution of the Space Metric Signature with Energy from the Correlations of the Azimuthal Characteristics of Particles?

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The coplanarity of subcores in γ-ray–hadron families of the so-called long-range near-side “ridge” effect discovered by the CMS Collaboration at the LHC can be described in terms of the FANSY
2.0 model, which reproduces the coplanar generation of the most energetic particles in hadron interactions at superhigh energies. Coplanar generation can be explained, in particular, by the hypothesis of change of the signature of the metric of the space–time continuum, namely, a fluctuation transformation of the basic
three-dimensional state into two-dimensional one (3D ↔ 2D). A method is proposed for experimental verification of this hypothesis by studying the azimuthal correlations of different particles in hadron
interactions.

Sobre autores

R. Mukhamedshin

Институт ядерных исследований РАН

Autor responsável pela correspondência
Email: rauf_m@mail.ru
Россия, Москва

Bibliografia

  1. A. S. Borisov et al. (Pamir Collab), in Proceedings of the 4th ISVHECRI Beijing, 1986, p. 4.
  2. I. P. Ivanenko and B. L. Kanevsky, JETP Lett. 50, 2125 (1992).
  3. V. V. Kopenkin, A. K. Managadze, I. V. Rakobolskaya, and T. M. Roganova, Phys. Rev. D 52, 2766 (1995).
  4. Pamir Collab., Preprint INP MSU, no. 89-67/144 (1989).
  5. A. S. Borisov, R. A. Mukhamedshin, V. S. Puchkov, S. A. Slavatinsky, and G. B. Zhdanov, Nucl. Phys. B (Proc. Suppl.) 97, 118 (2001).
  6. L. Xue, Z. Q. Dai, and J. Y. Li, in Proceedings of the 26th ICRC Salt Lake City, 1999, Vol. 1, p. 127.
  7. A. V. Apanasenko, N. A. Dobrotin, L. A. Goncharova, K. A. Kotelnikov, and N. G. Polukhina, in Proceedings of the 15th ICRC Plovdiv, 1977, Vol. 7, p. 220.
  8. V. I. Osedlo, I. V. Rakobolskaya, V. I. Galkin, A. K. Managadze, L. G. Sveshnikova, L. A. Gon- charova, K. A. Kotelnikov, A. G. Martynov, and N. G. Polukhina, in Proceedings of the 27th ICRC, Hamburg, 2001, Vol. 1, p. 1426.
  9. J. N. Capdevielle, J. Phys. G 14, 503 (1988).
  10. R. A. Mukhamedshin, JHEP 0505, 049 (2005).
  11. R. A. Mukhamedshin, Nucl. Phys. B (Proc. Suppl.) 196, 98 (2009).
  12. А. К. Манагадзе, Р. А. Мухамедшин, Изв. РАН. Cер. физ. 77, 1573 (2013) [A. K. Managadze and R. A. Mukhamedshin, Bull. Russ. Acad. Sci.: Phys. 77, 1315 (2013)].
  13. I. I. Royzen, Mod. Phys. Lett. A 9, 3517 (1994).
  14. J. N. Capdevielle, Nucl. Phys. B (Proc. Suppl.) 175, 137 (2008).
  15. T. S. Yuldashbaev, Kh. Nuritdinov, and V. M. Chu- dakov, Nuovo Cimento C 24, 569 (2001).
  16. R. A. Mukhamedshin, Nucl. Phys. B (Proc. Suppl.) 75, 141 (1999).
  17. T. Wibig, hep-ph/0003230.
  18. L. Anchordoqui, D. C. Dai, M. Fairbairn, G. Land- sberg, and D. Stojkovic, Mod. Phys. Lett. A 27, 1250021 (2012).
  19. D. Stojkovic, arXiv: 1406.2696v1 [gr-qc].
  20. The CMS Collab., JHEP 1009, 091 (2010).
  21. R. A. Mukhamedshin, Eur. Phys. J. Plus. 134, 584 (2019).
  22. R. A. Mukhamedshin and T. Sadykov, J. Phys.: Conf. Ser. 1181, 012089 (2019).
  23. R. A. Mukhamedshin, Eur. Phys. J. C 82, 155 (2022).
  24. Р. А. Мухамедшин, Изв. РАН. Сер. физ. 85, 534 (2021) [R. A. Mukhamedshin, Bull. Russ. Acad. Sci.: Phys. 85, 402 (2021)].
  25. R. A. Mukhamedshin, Eur. Phys. J. C 79, 441 (2019).
  26. Р. А. Мухамедшин, Изв. РАН. Сер. физ 87, 962 (2023) [R. A. Mukhamedshin, Bull. Russ. Acad. Sci.: Phys. 87, 900 (2023)].

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2023