Is It Possible to Estimate the Parameters of the 2D Evolution of the Space Metric Signature with Energy from the Correlations of the Azimuthal Characteristics of Particles?

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The coplanarity of subcores in γ-ray–hadron families of the so-called long-range near-side “ridge” effect discovered by the CMS Collaboration at the LHC can be described in terms of the FANSY
2.0 model, which reproduces the coplanar generation of the most energetic particles in hadron interactions at superhigh energies. Coplanar generation can be explained, in particular, by the hypothesis of change of the signature of the metric of the space–time continuum, namely, a fluctuation transformation of the basic
three-dimensional state into two-dimensional one (3D ↔ 2D). A method is proposed for experimental verification of this hypothesis by studying the azimuthal correlations of different particles in hadron
interactions.

作者简介

R. Mukhamedshin

Институт ядерных исследований РАН

编辑信件的主要联系方式.
Email: rauf_m@mail.ru
Россия, Москва

参考

  1. A. S. Borisov et al. (Pamir Collab), in Proceedings of the 4th ISVHECRI Beijing, 1986, p. 4.
  2. I. P. Ivanenko and B. L. Kanevsky, JETP Lett. 50, 2125 (1992).
  3. V. V. Kopenkin, A. K. Managadze, I. V. Rakobolskaya, and T. M. Roganova, Phys. Rev. D 52, 2766 (1995).
  4. Pamir Collab., Preprint INP MSU, no. 89-67/144 (1989).
  5. A. S. Borisov, R. A. Mukhamedshin, V. S. Puchkov, S. A. Slavatinsky, and G. B. Zhdanov, Nucl. Phys. B (Proc. Suppl.) 97, 118 (2001).
  6. L. Xue, Z. Q. Dai, and J. Y. Li, in Proceedings of the 26th ICRC Salt Lake City, 1999, Vol. 1, p. 127.
  7. A. V. Apanasenko, N. A. Dobrotin, L. A. Goncharova, K. A. Kotelnikov, and N. G. Polukhina, in Proceedings of the 15th ICRC Plovdiv, 1977, Vol. 7, p. 220.
  8. V. I. Osedlo, I. V. Rakobolskaya, V. I. Galkin, A. K. Managadze, L. G. Sveshnikova, L. A. Gon- charova, K. A. Kotelnikov, A. G. Martynov, and N. G. Polukhina, in Proceedings of the 27th ICRC, Hamburg, 2001, Vol. 1, p. 1426.
  9. J. N. Capdevielle, J. Phys. G 14, 503 (1988).
  10. R. A. Mukhamedshin, JHEP 0505, 049 (2005).
  11. R. A. Mukhamedshin, Nucl. Phys. B (Proc. Suppl.) 196, 98 (2009).
  12. А. К. Манагадзе, Р. А. Мухамедшин, Изв. РАН. Cер. физ. 77, 1573 (2013) [A. K. Managadze and R. A. Mukhamedshin, Bull. Russ. Acad. Sci.: Phys. 77, 1315 (2013)].
  13. I. I. Royzen, Mod. Phys. Lett. A 9, 3517 (1994).
  14. J. N. Capdevielle, Nucl. Phys. B (Proc. Suppl.) 175, 137 (2008).
  15. T. S. Yuldashbaev, Kh. Nuritdinov, and V. M. Chu- dakov, Nuovo Cimento C 24, 569 (2001).
  16. R. A. Mukhamedshin, Nucl. Phys. B (Proc. Suppl.) 75, 141 (1999).
  17. T. Wibig, hep-ph/0003230.
  18. L. Anchordoqui, D. C. Dai, M. Fairbairn, G. Land- sberg, and D. Stojkovic, Mod. Phys. Lett. A 27, 1250021 (2012).
  19. D. Stojkovic, arXiv: 1406.2696v1 [gr-qc].
  20. The CMS Collab., JHEP 1009, 091 (2010).
  21. R. A. Mukhamedshin, Eur. Phys. J. Plus. 134, 584 (2019).
  22. R. A. Mukhamedshin and T. Sadykov, J. Phys.: Conf. Ser. 1181, 012089 (2019).
  23. R. A. Mukhamedshin, Eur. Phys. J. C 82, 155 (2022).
  24. Р. А. Мухамедшин, Изв. РАН. Сер. физ. 85, 534 (2021) [R. A. Mukhamedshin, Bull. Russ. Acad. Sci.: Phys. 85, 402 (2021)].
  25. R. A. Mukhamedshin, Eur. Phys. J. C 79, 441 (2019).
  26. Р. А. Мухамедшин, Изв. РАН. Сер. физ 87, 962 (2023) [R. A. Mukhamedshin, Bull. Russ. Acad. Sci.: Phys. 87, 900 (2023)].

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2023