Preparation of Chitosan–Graphite-Like Carbon-Nitride Biocoatings on AZ91 Magnesium Alloy
- Autores: Kasach A.A.1, Pospelov A.V.2, Osipenko M.A.3, Lazorenko GI.4, Bogdan E.3, Kasprzhitskii A.S.4, Kolchanova N.E.5, Kurilo I.I.3
- 
							Afiliações: 
							- Department of Chemistry and Technology of Electrochemical Production and Electronic Engineering Materials, Belorussian State Technological University, 220006, Minsk, Belarus
- Center of Physicochemical Research Methods, Belorussian State Technological University, 220006, Minsk, Belarus
- Department of Physical, Colloidal, and Analytical Chemistry, Belorussian State Technological University, 220006, Minsk, Belarus
- Rostov State Transport University, 344038, Rostov-on-Don, Russia
- Department of Microbiology, Virology and Immunology, Gomel State Medical University, Gomel, Belarus
 
- Edição: Volume 59, Nº 1 (2023)
- Páginas: 54-63
- Seção: НАНОРАЗМЕРНЫЕ И НАНОСТРУКТУРИРОВАННЫЕ МАТЕРИАЛЫ И ПОКРЫТИЯ
- URL: https://cardiosomatics.ru/0044-1856/article/view/663837
- DOI: https://doi.org/10.31857/S0044185622100047
- EDN: https://elibrary.ru/BWAMOB
- ID: 663837
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
In the present study, chitosan coatings modified with g-C3N4 were prepared for AZ91 magnesium alloy. The microstructure of the chitosan–g-C3N4 coatings, depending on the concentration of the particles of the modifying phase in the chitosan solution, was investigated by scanning electron microscopy and X-ray phase analysis. It was found that coatings prepared in suspension of chitosan containing more than 30 g/dm3 g-C3N4 exhibited a complete wettability with a sodium-phosphate buffer solution. Confocal microscopy established the degree of inhibition of E. coli biofilm formation on the surface of the prepared coatings. It was found by using linear voltammetry and electrochemical impedance spectroscopy that the modification of chitosan by the g-C3N4 particles led to an improvement in the protective properties of coatings.
Palavras-chave
Sobre autores
A. Kasach
Department of Chemistry and Technology of Electrochemical Production and Electronic Engineering Materials, Belorussian State Technological University, 220006, Minsk, Belarus
														Email: kasach2018@bk.ru
				                					                																			                												                								Беларусь, 220006, Минск						
A. Pospelov
Center of Physicochemical Research Methods, Belorussian State Technological University, 220006, Minsk, Belarus
														Email: kasach2018@bk.ru
				                					                																			                												                								Беларусь, 220006, Минск						
M. Osipenko
Department of Physical, Colloidal, and Analytical Chemistry, Belorussian State Technological University, 220006, Minsk, Belarus
														Email: kasach2018@bk.ru
				                					                																			                												                								Беларусь, 220006, Минск						
G Lazorenko
Rostov State Transport University, 344038, Rostov-on-Don, Russia
														Email: kasach2018@bk.ru
				                					                																			                												                								Россия, 344038, Ростов-на-Дону						
E. Bogdan
Department of Physical, Colloidal, and Analytical Chemistry, Belorussian State Technological University, 220006, Minsk, Belarus
														Email: kasach2018@bk.ru
				                					                																			                												                								Беларусь, 220006, Минск						
A. Kasprzhitskii
Rostov State Transport University, 344038, Rostov-on-Don, Russia
														Email: kasach2018@bk.ru
				                					                																			                												                								Россия, 344038, Ростов-на-Дону						
N. Kolchanova
Department of Microbiology, Virology and Immunology, Gomel State Medical University, Gomel, Belarus
														Email: kasach2018@bk.ru
				                					                																			                												                								Беларусь, 210009, Витебск						
I. Kurilo
Department of Physical, Colloidal, and Analytical Chemistry, Belorussian State Technological University, 220006, Minsk, Belarus
							Autor responsável pela correspondência
							Email: kasach2018@bk.ru
				                					                																			                												                								Беларусь, 220006, Минск						
Bibliografia
- Maguire M.E., Cowan J.A. Magnesium chemistry and biochemistry // BioMetals. 2002. V. 15. № 3. P. 203–210.
- Kharitonov D.S. et al. // Corros. Sci. 2021. V. 190. P. 140175.
- Nowak P. et al. // J. Electrochem. Soc. 2020. V. 167. № 13. P. 131504.
- Zheng Y.F., Gu X.N., Witte F. // Mater. Sci. Eng. R Reports. 2014. V. 77. P. 1–34.
- Esmaily M. et al. // Prog. Mater. Sci. 2017. V. 89. P. 92–193.
- Wu T. et al. // J. Magnes. Alloy. 2021. V. 9. № 5. P. 1725–1740.
- Zhang D. et al. // Surf. Coatings Technol. 2019. V. 363. № 200. P. 87–94.
- Gnedenkov A.S. et al. // Corros. Sci. 2021. V. 182. P. 109254.
- Chu J.H. et al. // Carbon. 2020. V. 161. P. 577–589.
- Aydemir T. et al. // Thin Solid Films. 2021. V. 732. P. 138780.
- Rahimi M. et al. // Surf. Coatings Technol. 2021. V. 405. P. 126627.
- Rahman M., Li Y., Wen C. // J. Magnes. Alloy. 2020. V. 8. № 3. P. 929–943.
- Fekry A.M., Azab S.M. // Nano-Structures and Nano-Objects. 2020. V. 21. P. 100411.
- Karimi N., Kharaziha M., Raeissi K. // Mater. Sci. Eng. 2019. V. 98. № May 2018. P. 140–152.
- Witecka A. et al. // Surf. Coatings Technol. 2021. V. 418. P. 127232.
- Fekry A.M., Ghoneim A.A., Ameer M.A. // Surf. Coatings Technol. 2014. V. 238. P. 126–132.
- Bakhsheshirad H.R. et al. // Materials. 2021. V. 14. № 8. P. 1930.
- Kharitonov D.S. et al. // Materials. 2021. V. 14. № 11. P. 2754.
- Pantović Pavlović M.R. et al. // Mater. Lett. 2020. V. 261. P. 1–4.
- Mujtaba M. et al. // Int. J. Biol. Macromol. 2019. V. 121. P. 889–904.
- Francis A.A., Abdel-Gawad S.A., Shoeib M.A. // J. Coatings Technol. 2021. V. 18. № 4. P. 971–988.
- Ahangari M., Johar M.H., Saremi M. // Ceram. Int. 2021. V. 47. № 3. P. 3529–3539.
- Askarnia R. et al. // Ceram. Int. 2021. V. 47. № 19. P. 27071–27081.
- John S. et al. // Prog. Org. Coatings. 2019. V. 129. P. 254–259.
- Eduok U., Jossou E., Szpunar J. // J. Mol. Liq. 2017. V. 241. P. 684–693.
- Shi Y.Y. et al. // J. Mater. Sci. Mater. Med. 2016. V. 27. № 3. P. 1–13.
- Ni Y. et al. // Food Chem. 2021. V. 362. № May. P. 130201.
- Kang S. et al. // J. Colloid Interface Sci. 2020. V. 563. P. 336–346.
- Xiao P. et al. // Mater. Lett. 2018. V. 212. P. 111–113.
- Budevski E., Staikov G., Lorenz W.J. // Diam. Relat. Mater. 2016. V. 66. P. 16–22.
- Atrens A. et al. // Adv. Eng. Mater. 2015. V. 17. № 4. P. 400–453.
- Kong M. et al. // Int. J. Food Microbiol. 2010. V. 144. № 1. P. 51–63.
- Francis A., Yang Y., Boccaccini A.R. // Appl. Surf. Sci. 2019. V. 466. P. 854–862.
- Pan F., Yang M., Chen X. // J. Mater. Sci. Technol. 2016. V. 32. № 12. P. 1211–1221.
- Osipenko M.A. et al. // Electrochim. Acta. 2022. V. 414. P. 140175.
- Zhao X. et al. // Appl. Surf. Sci. 2021. V. 537. P. 147891.
- Kumar S., Koh J. // Int. J. Mol. Sci. 2012. V. 13. № 5. P. 6103–6116.
- Ma F. et al. // Int. J. Mol. Sci. 2012. V. 13. № 6. P. 7788–7797.
- Rosales-Leal J.I. et al. // Colloids Surfaces A Physicochem. Eng. Asp. 2010. V. 365. № 1–3. P. 222–229.
- Wang Y. et al. // Nat. Commun. 2019. V. 10. № 1. P. 1–8.
- Lotfpour M. et al. // J. Magnes. Alloy. 2021. V. 9. № 6. P. 2078–2096.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 











