Oxythermography for exploring the thermal stability of polymer materials: a novel analytical approach

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The control of oxygen and carbon dioxide concentrations in an airflow released from a reactor, in which a sample is heated, can be used to investigate the thermal stability of polymer materials. This approach, known as oxithermography, involves analyzing experimental data (oxithermograms), representing the variation in oxygen concentration decrease and carbon dioxide appearance in an airflow with changing temperature conditions. This method allows for monitoring the effect of fillers introduced into polymer compositions on their thermal stability. The application of oxithermography to studying oxidative thermostability is demonstrated using pure polypropylene and polypropylene with titanium dioxide admixtures as examples.

Толық мәтін

Рұқсат жабық

Авторлар туралы

B. Zuev

Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences

Email: smile_mail@mail.ru
Ресей, 119991, Moscow

A. Zaitseva

Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences

Email: smile_mail@mail.ru
Ресей, 119991, Moscow

A. Korotkov

Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences

Email: smile_mail@mail.ru
Ресей, 119991, Moscow

V. Filonenko

Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences

Email: smile_mail@mail.ru
Ресей, 119991, Moscow

I. Rogovaya

Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: smile_mail@mail.ru
Ресей, 119991, Moscow

Әдебиет тізімі

  1. Haines P.J. Thermogravimetry / Thermal Methods of Analysis. Principles, Applications and Problems. Dordrecht: Springer Science Business Media, 1995. P. 22.
  2. Haines P.J. Wilburn F.W. Differential thermal analysis and differential scanning calorimetry / Thermal Methods of Analysis, Principles, Applications and problems. Dordrecht: Springer Science Business Media, 1995. P. 632.
  3. Зуев Б.К. Способ окситермографии. Патент РФ № 2411509. Заявка № 2010101137 от 15.01.2010, опубл. 10.02.2011.
  4. Роговая И.В., Зуев Б.К., Титова Т.В., Моржухина С.В., Сараева А.Е., Филоненко В.Г. Оптимизация условий определения органического вещества в воде “безреагентным” методом окситермографии и его применение для анализа природной воды // Журн. аналит. химии. 2016. Т. 71. № 10. С. 1069. (Rogovaya I.V., Zuev B.K., Titova T.V., Morzhukhina S.V., Saraeva A.E., Filonenko V.G. Optimization of conditions for the determination of the organic matter content of waters by reagentless oxithermography and its application to the analysis of natural waters // J. Anal. Chem. 2016. V. 71. № 10. P. 1022.) https://doi.org/10.1134/S1061934816100117
  5. Зуев Б.К., Филоненко В.Г., Нестерович Д.С., Поликарпова Р.Д. Определение гиалуроновой кислоты в водных растворах с использованием воздуха в качестве окислителя // Журн. аналит. химии. 2018. Т. 73. № 10. С. 763. (Zuev B.K., Filonenko V.G., Nesterovich D.S., Polikarpova P.D. Determination of hyaluronic acid in aqueous solutions using air as an oxidant // J. Anal. Chem. 2018. V. 73. № 10. P. 973.) https://doi.org/10.1134/S106193481810013
  6. Зуев Б.К., Коваленко Е.В., Кульбачевская Е.В., Оленин А.Ю., Ягов В.В. Определение концентрации нефтепродуктов и масел в пленках на повехности воды с помощью твердоэлектролитного анализатора // Журн. аналит. химии. 2001. Т. 56. № 5. С. 543. (Zuev B.K., Kovalenko V.V., Kul’bachevskaya E.V., Olenin A.Yu., Yagov V.V. Determination of the concentration of petroleum products and oils in films at the surface of water using a solid-electrolyte analyzer // J. Anal. Chem. 2001. V. 56. № 5. P. 481.) https://doi.org/10.1023/A:1016691423009
  7. Зуев Б.К., Поликарпова П.Д., Филоненко В.Г., Коротков А.С., Сараева А.Е. Пробоотбор и определение гиалуроновой кислоты на иммитаторе кожи человека методом окситермографии // Журн. аналит. химии. 2019. Т. 74. № 4. С. 315. (Zuev B.K., Polikarpova P.D., Filonenko V.G., Korotkov A.S., Saraeva A.E. Sampling and determination of hyaluronic acid on a human skin imitator by oxithermography // J. Anal. Chem. 2019. V. 74. № 4. P. 410.) https://doi.org/10.1134/S1061934819030134
  8. Зуев Б.К., Новичков Р.В., Александрова Е.О., Оленин А.Ю. Получение и исследование состава поверхностного слоя химически модифицированных наночастиц диоксида кремния // Российские нанотехнологии. 2015. Т. 10. № 1–2. С. 45. (Zuev B.K., Novichkov R.V., Alexandrova E.O., Olenin A.Yu. Preparation and study of the surface-layer composition of chemically modified silica nanoparticles // Russ. Nanotechnol. 2015. V. 10. № 1–2. P. 53.) https://doi.org/10.1134/S1995078015010218
  9. Александрова Е.О., Новичков Р.В., Оленин А.Ю., Зуев Б.К. Формирование и исследование методом окситермографии привитого поверхностного слоя на частицах диоксида кремния // Журн. физ. химии. 2017. Т. 91. № 3. С. 513. (Aleksandrova E.O., Novichkov R.V., Olenin A.Yu., Zuev B.K. Formation of grafted surface layers on silicon dioxide particles and their investigation by means of thermoprogrammed oxidation // Russ. J. Phys. Chem. A. 2017. V. 91. № 3. P. 555.) https://doi.org/10.1134/S0036024417030013
  10. Зуев Б.К., Роговая И.В., Ларкович Р.В. Определение труднолетучих смолистых веществ в составе бензинов различных марок методом термоокислительной спектроскопии – окситермографии // Журн. аналит. химии. 2020. Т. 75. № 9. С. 792. (Zuev B.K., Rogovaya I.V., Larkovich R.V. Determination of poorly volatile resinous substances in the composition of gasolines of different brands by thermal oxidation spectroscopy–oxythermography // J. Anal. Chem. 2020. V. 75. № 9. P. 1147.) https://doi.org/10.1134/S106193482009018X
  11. Зуев Б.К., Дворкин В.И., Филоненко В.Г., Михайлова А.В., Бубнова И.А. Высокотемпературный сенсорный анализатор: определение труднолетучих органических примесей в растворителях // Журн.аналит.химии. 2007. Т. 62. № 9. С. 1000. (Zuev B.K., Dvorkin V.I., Filonenko V.G., Mikhailova A.V., Bubnova I.A. A High-temperature sensor analyzer: determination of difficult volatile organic impurities in solvents // J. Anal. Chem. 2007. V. 62. № 9. P. 903.) https://doi.org/10.1134/S1061934807090171
  12. Зуев Б.К., Оленин А.Ю. Твердоэлектролитный датчик как детектор для газохроматографического определения горючих примесей в воздухе // Журн. аналит. химии. 2006. Т. 61. № 2. С. 157. (Zuev B.K., Olenin A.Yu. Solid electrolyte sensor as a detector for gas chromatographic determination of combustible contaminants in air // J. Anal. Chem. 2006. V. 61. № 2. P. 147.) https://doi.org/10.1134/S1061934806020109
  13. Севастьянов В.С., Галимов Э.М., Бабулевич Н.Е., Тюрина Е.Н., Аржанников А.А. Оптимизация работы твердоэлектролитной ячейки на основе диоксида циркония в качестве окислительного реактора и хроматографического датчика // Электрохимия. Т. 45. № 6. 2009. С. 705. (Sevast’yanov V.S., Galimov E.M., Babulevich N.E., Tyurina E.N., Arzhannikov A.A. Optimizing zirconia–based solid electrolyte cell operated as oxidizing reactor and chromatographic sensor // Russ. J. Electrochem. 2009. V. 45. № 6. P. 662. https://doi.org/10.1134/S102319350906007X)
  14. Abbas-Abadi M.S., Van Geem K.M., Fathi M., Bazgir H., Ghadiri M. The pyrolysis of oak with polyethylene, polypropylene and polystyrene using fixed bed and stirred reactors and TGA instrument // Energy. 2021. V. 232. Article 121085. https://doi.org/10.1016/j. energy.2021.121085
  15. Mat-Shayuti M.S., Abdullah M.Z., Megat-Yusoff P.S.M. Thermal properties and morphology of polypropylene/polycarbonate/polypropylene-graft-maleic anhydride blends // MATEC Web Conf. 2016. V. 6. № 4. Article 03001. https://doi.org/10.1051/matecconf/20166903001
  16. Nguyen T.A., Ichise S., Kinashi K., Sakai W., Tsutsumi N., Okubayashi S. Spin trapping analysis of the thermal degradation of polypropylene // Polym. Degrad. Stabil. 2022. V. 197. Article 109871. https://doi.org/10.1016/j.polymdegradstab.2022.109871
  17. Wang K., Addiego F., Bahlouli N., Ahzi S., Rémond Y., Toniazzo V., Muller R. Analysis of thermomechanical reprocessing effects on polypropylene/ethylene octene copolymer blends // Polym. Degrad. Stabil. 2012. V. 97. № 8. P. 1475. https://doi.org/10.1016/j.polymdegradstab.2012.05.005
  18. Esmizadeh E., Tzoganakis C., Mekonnen T.H. Degradation behavior of polypropylene during reprocessing and its biocomposites: Thermal and oxidative degradation kinetics // Polymers. 2020. V. 12. № 8. Article 1627. https://doi.org/10.3390/polym12081627
  19. Naseem S., Wießner S., Kühnert I., Leuteritz A. Layered double hydroxide (MgFeAl-LDH)-based polypropylene (PP) nanocomposite: Mechanical properties and thermal degradation // Polymers. 2021. V. 13. № 19. Article 3452. https://doi.org/10.3390/polym13193452
  20. Furushima Y., Ota R., Ohkawa T. Isothermal thermogravimetric method using a fast scanning calorimeter and its application in the isothermal oxidation of nanogram-weight polypropylene // Thermochim. Acta. 2020. V. 694. Article 178804. https://doi.org/10.1016/j.tca.2020.178804
  21. Isaac N.A., Pikaar I., Biskos G. Metal oxide semiconducting nanomaterials for air quality gas sensors: operating principles, performance, and synthesis techniques // Microchim. Acta. 2022. V. 189. № 5. Article 196. https://doi.org/10.1007/s00604-022-05254-0
  22. Tian X., Cui X., Lai T., Ren J., Yang Z., Xiao M., Wang B., Xiao X., Wang Y. Gas sensors based on TiO2 nanostructured materials for the detection of hazardous gases: A review // Nano Mater. Sci. 2021. V. 3. № 4. P. 390. https://doi.org/10.1016/j.nanoms.2021.05.011
  23. ГОСТ Р 56721-2015 Пластмассы. Термогравиметрия полимеров. М.: Стандартинформ, 2016. 9 с.
  24. Зуев Б.К. Способ исследования органических веществ, преимущественно характеристик окислительной термодеструкции органических полимеров. Патент РФ № 2794417. Заявка № 2022115230 от 06.06.2022, опубл. 17.04.2023.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Scheme of an experimental oxithermographic installation for the study of polymer samples by oxithermography. 1 – quartz boat, 2 – thermocouple, 3 – quartz boat insertion unit into the reactor, 4 – inlet to the temperature reactor, 5 – quartz high–temperature reactor, 6 – heating element, 7 – exhaust gas oxidation catalyst, 8 - thermocouple controlling reactor heating, 9 – oxygen sensor, 10 – carbon dioxide sensor gas, 11 – rotameter, 12 – air flow stimulators, 13 – control unit and experimental data collection, 14 – personal computer.

Жүктеу (126KB)
3. Fig. 2. Time scans of the coordinates of the boat (1) and the surface temperature of the boat with the sample (2), used to form the temperature profile of heating samples when studying the thermal degradation of samples of initial polypropylene (PP) and polypropylene with titanium dioxide additives.

Жүктеу (80KB)
4. Fig. 3. Change in oxygen content (relative units) in the air stream leaving the reactor, depending on time for samples of pure polypropylene (PP) and with a content of 1, 2 and 5% TiO2.

Жүктеу (88KB)
5. Fig. 4. Change in the carbon dioxide content (relative units) in the air stream leaving the reactor, depending on time for samples of pure polypropylene (PP) and with a content of 1, 2 and 5% TiO2.

Жүктеу (78KB)
6. Fig. 5. Change in oxygen content (relative units) in the air stream leaving the reactor, depending on the heating temperature for samples of pure polypropylene (PP) and with a content of 1, 2 and 5% TiO2.

Жүктеу (91KB)
7. Fig. 6. Change in the carbon dioxide content (relative units) in the air stream leaving the reactor, depending on the heating temperature for samples of pure polypropylene (PP) and with a content of 1, 2 and 5% TiO2.

Жүктеу (77KB)
8. Fig. 7. Curve characterizing oxygen consumption as a function of temperature during the thermal degradation of polypropylene with the addition of 5% TiO2. The dotted line shows a straight line approximating the leading edge.

Жүктеу (64KB)
9. Fig. 8

Жүктеу (24KB)
10. Scheme 1

Жүктеу (30KB)

© Russian Academy of Sciences, 2024