Selective voltammetric determination of dopamine on an electrode modified with palladium particles and a molecular imprinted polymer from nicotinamide

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A method for manufacturing a glass-carbon electrode with electrodeposited palladium particles and a molecular imprinted polymer from nicotinamide for the determination of dopamine in the presence of structurally related compounds has been developed. The use of a polymer with specific recognition centers complementary to the template molecule led to an increase in the sensitivity and selectivity of dopamine detection. Immobilization of palladium particles on the electrode surface made it possible to increase the selectivity of the voltammetric determination of dopamine in the presence of adrenaline and norepinephrine. The potential difference of the oxidation peaks of these compounds is 200 mV. The linear bilogarithmic dependence of the analytical signal on the dopamine concentration is observed in the range from 5.0 × 10–9 to 5.0 × 10–3 М. The proposed method was tested in the analysis of urine samples.

全文:

受限制的访问

作者简介

L. Shaidarova

KFU

编辑信件的主要联系方式.
Email: larisashaidarova@mail.ru

Butlerov Institute of Chemistry

俄罗斯联邦, 18 Kremlyovskaya St., Kazan, 420008

I. Chelnokova

KFU

Email: larisashaidarova@mail.ru

Butlerov Institute of Chemistry

俄罗斯联邦, 18 Kremlyovskaya St., Kazan, 420008

D. Khairullina

KFU

Email: larisashaidarova@mail.ru

Butlerov Institute of Chemistry

俄罗斯联邦, 18 Kremlyovskaya St., Kazan, 420008

Y. Leksina

KFU

Email: larisashaidarova@mail.ru

Butlerov Institute of Chemistry

俄罗斯联邦, 18 Kremlyovskaya St., Kazan, 420008

H. Budnikov

KFU

Email: larisashaidarova@mail.ru

Butlerov Institute of Chemistry

俄罗斯联邦, 18 Kremlyovskaya St., Kazan, 420008

参考

  1. Liu X., Liu J. Biosensors and sensors for dopamine detection // View. 2021. V. 2. № 1. Article 20200102. https://doi.org/10.1002/VI W.20200102
  2. Ramesh S., Arachchige A.S.P.M. Depletion of dopamine in Parkinson’s disease and relevant therapeutic options: A review of the literature // AIMS Neurosci. 2023. V. 10. № 3. P. 200. https://doi.org/10.3934/Neuroscience.2023017
  3. Moghaddam B., Abbas A.I. Depression and prefrontal cortex: All roads lead to dopamine // Biol. Psychiatry. 2022. V. 91. № 9. P. 773. https://doi.org/10.1016/j.biopsych.2022.02.015
  4. Olivares-Hernández A., Figuero-Pérez L., Cruz-Hernandez J.J., González Sarmiento R., Usategui-Martin R., Miramontes-González J.P. Dopamine receptors and the kidney: An overview of health-and pharmacological-targeted implications // Biomolecules. 2021. V. 11. № 2. P. 254. https://doi.org/10.3390/biom11020254
  5. Shakeel F., Fazal M.W., Zulfiqar A., Zafar F., Akhtar N., Ahmed A., Shafiq Z. Melamine-derived N-rich C-entrapped Au nanoparticles for sensitive and selective monitoring of dopamine in blood samples // RSC Adv. 2022. V. 12. № 40. P. 26390.
  6. Perry M., Li Q., Kennedy R.T. Review of recent advances in analytical techniques for the determination of neurotransmitters // Anal. Chim. Acta. 2009. V. 653. P. 1. htps://doi.org/10.1016/j.aca.2009.08.038
  7. Tampu R.I., Finaru A., Elfakir C. Determination of catecholamines and related molecules in brain extract using a hydrophilic interaction liquid chromatography mass spectrometry method // Sci. Study Res. Chem. Chem. Eng., Biotechnol., Food Ind. 2020. V. 21. № 1. P. 59.
  8. Шайдарова Л.Г., Будников Г.К. Химически модифицированные электроды на основе благородных металлов, полимерных пленок или их композитов в органической вольтамперометрии // Журн. аналит. химии. 2008. Т. 63. № 10. С. 1014. (Shaidarova L.G., Budnikov G.K. Chemically modified electrodes based on noble metals, polymer films, or their composites in organic voltammetry // J. Anal. Chem. 2008. V. 63. № 10. P. 922. https://doi.org/10.1134/S106193480810002X)
  9. Sajid M., Baig N., Alhooshani K. Chemically modified electrodes for electrochemical detection of dopamine: Challenges and opportunities // Trends Anal. Chem. 2019. Т. 118. P. 368. https://doi.org/10.1016/j.trac.2019.05.042
  10. Nasa K., Kurnia I., Hartati Y.W., Einaga Y. Low-interference norepinephrine signal on dopamine detection using nafion-coated boron doped diamond electrodes // Biosens. Bioelectron. 2023. V. 220. Article 114892. https://doi.org/10.1016/j.bios.2022.114892
  11. de Matos Morawski F., Xavier B.B., Virgili A.H., dos Santos Caetano K., de Menezes E.W., Benvenutti E.V., Arenas L.T. A novel electrochemical platform based on mesoporous silica/titania and gold nanoparticles for simultaneous determination of norepinephrine and dopamine // Mater. Sci. Eng. C. 2021. V. 120. Article 111646. https://doi.org/10.1016/j.msec.2020.111646
  12. Yin B., Zhai H.L., Zhao B.Q., Bi K.X., Mi J.Y. Chemometrics-assisted simultaneous voltammetric determination of multiple neurotransmitters in human serum // Bioelectrochemistry. 2021. V. 139. Article 107739. https://doi.org/10.1016/j.bioelechem.2021.107739
  13. Vinoth V., Natarajan L.N., Mangalaraja R.V., Valdes H., Anandan S. Simultaneous electrochemical determination of dopamine and epinephrine using gold nanocrystals capped with graphene quantum dots in a silica network // Microchim. Acta. 2019. V. 186. P. 1. https://doi.org/10.1007/s00604-019-3779-9
  14. Fatma S., Prasad B.B., Jaiswal S., Singh R., Singh K. Electrochemical simultaneous analysis of dopamine and epinephrine using double imprinted One MoNomer acryloylated graphene oxide-carbon black composite polymer // Biosens. Bioelectron. 2019. V. 135. P. 36. https://doi.org/10.1016/j.bios.2019.04.016
  15. Ndunda E.N. Molecularly imprinted polymers – A closer look at the control polymer used in determining the imprinting effect: A mini review // J. Mol. Recognit. 2020. V. 33. № 11. P. 2855. https://doi.org/10.1002/jmr.2855
  16. Villa C.C., Sánchez L.T., Valencia G.A., Ahmed S., Gutiérrez T.J. Molecularly imprinted polymers for food applications: A review // Trends Food Sci. Technol. 2021. V. 111. P. 642. https://doi.org/10.1016/j.tifs.2021.03.003
  17. Viveiros R., Rebocho S., Casimiro T. Green strategies for molecularly imprinted polymer development // Polymers. 2018. V. 10. № 3. P. 306. https://doi.org/10.3390/polym10030306
  18. Li B., Zhou Y., Wu W., Liu M., Mei S., Zhou Y., Jing T. Highly selective and sensitive determination of dopamine by the novel molecularly imprinted poly (nicotinamide)/CuO nanoparticles modified electrode // Biosens. Bioelectron. 2015. V. 67. P. 121. https://doi.org/10.1016/j.bios.2014.07.053
  19. Zhu X., Lin X. Eletropolymerization of niacinamide for fabrication of electrochemical sensor: Simultaneous determination of dopamine, uric acid and ascorbic acid // Chin. J. Chem. 2009. V. 27. № 6. P. 1103. https://doi.org/10.1002/cjoc.200990184
  20. Лисичкин Г.В., Крутяков Ю.А. Материалы с молекулярными отпечатками: синтез, свойства, применение // Успехи химии. 2006. Т. 75. № 10. С. 998. https://doi.org/10.1070/RC2006v075n10ABEH003618
  21. Ribeiro J.A., Fernandes P.M., Pereira C.M., Silva F. Electrochemical sensors and biosensors for determination of catecholamine neurotransmitters: A review // Talanta. 2016. V. 160. P. 653. https://doi.org/10.1016/j.talanta.2016.06.066
  22. Шайдарова Л.Г., Челнокова И.А., Лексина Ю.А., Гедмина А.В., Будников Г.К. Использование двойного планарного электрода с наночастицами палладия для проточно-инжекционного амперометрического определения дофамина и адреналина // Журн. аналит. химии. 2020. Т. 75. С. 736. https://doi.org/10.31857/S0044450220080137 (Shaidarova L.G., Chelnokova I.A., Leksina Y.A., Gedmina A.V., Budnikov H.C. A dual screen-printed electrode with palladium nanoparticles for the flow-injection amperometric determination of dopamine and adrenaline // J. Anal. Chem. 2020. V. 75. № 8. P. 1059.)
  23. Grouzmann E., Lamine F. Determination of catecholamines in plasma and urine // Best Pract. Res. Clin. Endocrinol. Metab. 2013. V. 27. P. 713. https://doi.org/10.1016/j.beem.2013.06.004

补充文件

附件文件
动作
1. JATS XML
2. Scheme 1. Electropolymerization of nicotinamide.

下载 (29KB)
3. Scheme 2. Electrooxidation of dopamine.

下载 (34KB)
4. Fig. 1. Cyclic voltammograms obtained on unmodified GCE (1) and MIP-GCE (2) in the presence of dopamine (c = 5×10–3 M) against the background of 0.1 M H2SO4 (a); dependence of I / о during dopamine electrooxidation on the MIP-GCE electrode (b).

下载 (82KB)
5. Fig. 2. Cyclic voltammograms obtained on MIP-Pd-GCE (1, 3) and Pd-MIP-GCE (2) in the absence (1) and presence (2, 3) of dopamine (c = 5 × 10–3 M) against the background of 0.1 M H2SO4 (a); dependence of I / о during dopamine electrooxidation on MIP-Pd-GCE (b).

下载 (99KB)
6. Fig. 3. Nyquist diagrams obtained on unmodified GCE (1), on Pd-GCE (2) (a), on Pd-MIP-GCE (3) and MIP-Pd-GCE (4) (b) in the presence of 1.0 mM K4[Fe(CN)6]/K3Fe(CN)6 against the background of 0.1 M KCl in the frequency range from 0.01 Hz to 10 kHz with an amplitude of 5 mV at a potential of 0.24 V.

下载 (82KB)
7. Fig. 4. Cyclic voltammograms obtained on MIP-Pd-GCE during electrooxidation of dopamine (c = 5×10–3 M) in the presence of adrenaline with a concentration of 5 × 10–5 (1), 5 × 10–4 (2), 5 × 10–3 (3) M (a) and noradrenaline with a concentration of 5 × 10–5 (1), 5 × 10–4 (2), 5 × 10–3 (3) M (b) against the background of 0.1 M H2SO4.

下载 (200KB)

版权所有 © Russian Academy of Sciences, 2024