Study of the effect of x-ray radiation on the structural characteristics of bovine serum albumin protein using high-resolution liquid chromatography-mass spectrometry
- Authors: Brown A.V.1, Bliznyuk U.A.2,3, Borshchegovskaya P.Y.2,3, Ipatova V.S.3, Chernyaev A.P.2,3, Ananyeva I.A.1, Rodin I.A.1,4
-
Affiliations:
- Lomonosov Moscow State University, Faculty of Chemistry
- Lomonosov Moscow State University, Faculty of Physics
- Skobeltsyn Institute of Nuclear Physics
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)
- Issue: Vol 80, No 3 (2025)
- Pages: 279-292
- Section: ORIGINAL ARTICLES
- Submitted: 09.06.2025
- URL: https://cardiosomatics.ru/0044-4502/article/view/683422
- DOI: https://doi.org/10.31857/S0044450225030051
- EDN: https://elibrary.ru/afrngv
- ID: 683422
Cite item
Abstract
A method for assessing changes in the structural characteristics of bovine serum albumin (BSA) protein in aqueous solution as a result of exposure to ionizing radiation has been developed and tested. The method consists of identifying unique peptides of the protein domain structures, as well as establishing amino acid sequence modifications using high-resolution liquid chromatography-mass spectrometry. The BSA solution was irradiated with X-ray radiation with a tube voltage of 80 kV and an average current of 1 mA, the dose rate was 2 Gy/sec. The absorbed dose in the sample volume was estimated by the ferrosulfate dosimetry method. Aqueous solution of BSA was irradiated at doses of 0.1, 0.5, 1, 2, 4, and 8 kGy, after which the content of protein molecules in the solution was quantitatively assessed and the structural integrity of the native form of protein was analyzed, as well as the modifications of amino acids in the BSA sequence as a result of the radiation action were determined. For more in-depth analysis, the reduction of cysteine-cysteine disulfide bonds by BSA followed by alkylation of the resulting thiol residues with bromoacetic acid amide was performed. Enzymatic hydrolysis of BSA was carried out with the addition of trypsin solution. The obtained samples were analyzed by high-resolution liquid chromatography-mass spectrometry with high-resolution tandem mass spectrometric detection. Next, we evaluated the change in the number of intact protein molecules by detecting unique peptides corresponding to each of the three domains that make up the amino acid sequence of BSA. The detection limit of each peptide was calculated taking into account the optimization of conditions for detection of the three domains as markers of the active form of BSA. The developed approach made it possible to determine the change in the natural conformation of bovine serum albumin protein (its denaturation) in aqueous samples as a result of ionizing radiation exposure at doses of 4-8 kGy at an average power of 2 Gy/sec.
Full Text

About the authors
A. V. Brown
Lomonosov Moscow State University, Faculty of Chemistry
Author for correspondence.
Email: igorrodin@yandex.ru
Russian Federation, Moscow
U. A. Bliznyuk
Lomonosov Moscow State University, Faculty of Physics; Skobeltsyn Institute of Nuclear Physics
Email: igorrodin@yandex.ru
Russian Federation, Moscow; Moscow
P. Yu. Borshchegovskaya
Lomonosov Moscow State University, Faculty of Physics; Skobeltsyn Institute of Nuclear Physics
Email: igorrodin@yandex.ru
Russian Federation, Moscow; Moscow
V. S. Ipatova
Skobeltsyn Institute of Nuclear Physics
Email: igorrodin@yandex.ru
Russian Federation, Moscow
A. P. Chernyaev
Lomonosov Moscow State University, Faculty of Physics; Skobeltsyn Institute of Nuclear Physics
Email: igorrodin@yandex.ru
Russian Federation, Moscow; Moscow
I. A. Ananyeva
Lomonosov Moscow State University, Faculty of Chemistry
Email: igorrodin@yandex.ru
Russian Federation, Moscow
I. A. Rodin
Lomonosov Moscow State University, Faculty of Chemistry; I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)
Email: igorrodin@yandex.ru
Russian Federation, Moscow; Moscow
References
- Черняев А.П. Радиационные технологии. Наука. Народное хозяйство. Медицина. М.: Издательство Московского университета, 2019. С. 231.
- Черняев А.П., Колыванова М.А., Борщеговская П.Ю. Радиационные технологии в медицине. Часть 1. Медицинские ускорители // Вестн. Моск. ун-та. Серия 3: Физика, астрономия. 2015. № 6. С. 28. (Chernyaev A.P., Kolyvanova M.A., Borshchegovskaya P.Yu. Radiation technology in medicine. Рart 1. medicine accelerators // Moscow Univ. Phys. Bull. 2015. V. 70. № 6. Р. 457.)
- ISO 11137-3-2006 Sterilization of health care products Radiation Part 3: Guidance on dosimetric aspects. Стерилизация медицинской продукции. Облучение. Часть 3. Руководство по вопросам дозиметрии.
- ISO 14470-2011 Food irradiation – Requirements for the development, validation and routine control of the process of irradiation using ionizing radiation for the treatment of food. Радиационная обработка пищевых продуктов. Требования к разработке, валидации и повседневному контролю процесса облучения пищевых продуктов ионизирующим излучением.
- Zhang Rong Ke, Lyu Jia Hua, Li Tao. Effects of radiation on protein // J. Nutr. Oncol. 2020. V. 5. № 3. P. 116. https://doi.org/10.34175/jno202003002
- Пузан Н.Д., Чешик И.А. Молекулярные механизмы действия ионизирующего излучения. Влияние облучения на белок (обзор литературы) // Медико-биологические проблемы жизнедеятельности. 2023. № 1. С. 14. (Puzan N.D., Cheshik I.A. Molecular mechanisms of effects of ionizing radiation action. Irradiation effect on protein (literary review) // Medical and Biological Problems of Life Activity. 2023. № 1. P. 14 (in Russ.)) https://doi.org/10.58708/2074-2088.2023-1(29)-14-26
- Тимакова Р.Т. Влияние ионизирующего излучения на биологическую ценность белков говядины // Пищевая промышленность. 2020. № 5. C. 12.
- Rozhko T.V., Nemtseva E.V., Gardt M.V., Raikov A.V., Lisitsa A.E., Badun G.A., Kudryasheva N.S. Enzymatic responses to low-intensity radiation of tritium // Int. J. Mol. Sci. 2020. V. 21. № 22. P. 1. Article 8464. https://doi.org/10.3390/ijms21228464
- Adibian M., Mami Y. Effect of electron-beam irradiation on enzyme activities in Agaricus brunnescens // J. Pure Appl. Microbiol. 2018. V. 12. № 3. P. 1435. https://doi.org/10.22207/JPaM.12.3.46
- Павлов А.Н., Чиж Т.В., Снегирев А.С., Санжарова Н.И., Черняев А.П., Борщеговская П.Ю. и др. Технологический процесс радиационной обработки пищевой продукции и дозиметрическое обеспечение // Радиационная гигиена. 2020. Т. 13. № 4. С. 40. https://doi.org/10.21514/1998-426X-2020-13-4-40-50
- Giroux M., Lacroix M. Nutritional adequacy of irradiated meat – A review // Food Res. Int. 1998. V. 31. № 4. С. 257.
- Дриль А.А., Рождественская Л.Н. Повышение биологической ценности белка и увеличение сроков хранения полуфабриката из вешенки обыкновенной методом электронной стерилизации // Изв. вузов. Прикл. химия и биотехнология. 2019. Т. 9. № 3. С. 500.
- Zhao L., Zhang Y., Pan Z., Venkitasamy C., Zhang L., Xiong W. et al. Effect of electron beam irradiation on quality and protein nutrition values of spicy yak jerky // LWT. 2017. № 87. Р. 1.
- Zarei H., Bahreinipour M., Eskandari K., Eskandari K., Zarandi S.-M., Ardestani S. Spectroscopic study of gamma irradiation effect on the molecular structure of bovine serum albumin // Vacuum. 2016. № 136. Р. 91.
- Liu G.X., Liu J., Tu Z.C., Sha X.M., Wang H., Wang Z.X. Investigation of conformation change of glycated ovalbumin obtained by Co-60 gamma-ray irradiation under drying treatment // Innov. Food Sci. Emerg. Technol. 2018. № 47. P. 286.
- Liu Y.-F., Oey I., Bremer P., Carne A., Silcock P. Modifying the functional properties of egg proteins using novel processing techniques: A review // Comprehensive Reviews in Food Science and Food Safety. 2019. V. 18. № 4. P. 986.10.1111/1541-4337.12464
- Olsen J.V., Ong S.E., Mann M. Trypsin cleaves exclusively C-terminal to arginine and lysine residues // Mol. Cell Proteomics. 2004. V. 3. № 6. P. 608. https://doi.org/10.1074/mcp.T400003-MCP200
- Keil B. Proteolysis data bank: Specificity of alpha-chymotrypsin from computation of protein cleavages // Protein Seq. Data Anal. 1987. V. 1. № 1. P. 13.
- Walmsley S.J., Rudnick P.A., Liang Y., Dong Q., Stein S.E., Nesvizhskii A.I. Comprehensive analysis of protein digestion using six trypsins reveals the origin of trypsin as a significant source of variability in proteomics // J Proteome Res. 2013. V. 12. № 12. P. 5666. https://doi.org/10.1021/pr400611h
- Saveliev S., Bratz M., Zubarev R., Szapacs M., Budamgunta H., Urh M. Trypsin/Lys-C protease mix for enhanced protein mass spectrometry analysis // Nat. Methods. 2013. V. 10. № 11. https://doi.org/10.1038/nmeth.f.371
- Браун А.В., Близнюк У.А., Борщеговская П.Ю., Ипатова В.С., Хмелевский О.Ю., Черняев А.П. и др. Исследование влияния ускоренных электронов на структурные характеристики бычьего сывороточного альбумина с использованием жидкостной хромато-масс-спектрометрии высокого разрешения // Заводск. лаборатория. Диагностика материалов. 2023. Т. 89. № 3. С. 14.
- Sam K.C. Chang, Yan Zhang. Protein analysis / Food Analysis. New York: Springer. 2017. P. 315. https://doi.org/10.1007/978-3-319-45776-5_18
- Марри Р., Греннер Д., Мейес П., Родуэлл В. Биохимия человека. М.: Мир, 1993. Т. 1. С. 384. ISBN 5-03-001774-7
- Gonzalez V.D., Gugliotta L.M., Giacomelli C.E., Meira G.R. Latex of immunodiagnosis for detecting the Chagas disease: II. Chemical coupling of antigen Ag36 onto carboxylated latexes // J. Mater. Sci. Mater. Med. 2008. № 19. С. 789.
- Doumas B.T., Bayse D.D., Carter R.J., Peters T., Schaffer R. A candidate reference method for determination of total protein in serum. I. Development and validation // Clin. Chem. 1981. V. 27. № 10. P. 1642.
- Francis G. Albumin and mammalian cell culture: Implications for biotechnology applications // Cytotechnology. 2010. № 62. Р. 1.
- Спектрофотометр УФ-3000. https://istina.msu.ru/equipment/card/615320740/ (дата обращения сентябрь 2024).
- Swissprot. Swiss Institute of Bioinformatics: Geneva, Switzerland. http://www.uniprot.org/contact (дата обращения 17.01.2018).
- Huang B.X., Kim H.Y., Dass C. Probing three-dimensional structure of bovine serum albumin by chemical cross-linking and mass spectrometry // J. Am. Soc. Mass Spectrom. 2004. № 15. P. 1237.
Supplementary files
