Noether symmetries and some exact solutions inf(R, T2) Theory
- Autores: Sharif M.1, Gul M.Z1
- 
							Afiliações: 
							- The University of Lahore
 
- Edição: Volume 163, Nº 4 (2023)
- Páginas: 496-502
- Seção: Articles
- URL: https://cardiosomatics.ru/0044-4510/article/view/653528
- DOI: https://doi.org/10.31857/S0044451023040065
- EDN: https://elibrary.ru/LRECZQ
- ID: 653528
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
The main objective of this article is to examine some physically viable solutions through the Noether symmetry technique in f ( R, T 2) theory. In order to investigate Noether equations, symmetry generators and conserved quantities, we use a speci c model of this modi ed theory. We nd exact solutions and examine the behavior of various cosmological quantities. It is found the behavior these quantities is consistent with current observations indicating that this theory describes the cosmic accelerated expansion. We conclude that generators of Noether symmetry and conserved quantities exist in this theory.
Sobre autores
M. Sharif
The University of Lahore
														Email: jetp@kapitza.ras.ru
				                					                																			                												                								Lahore-54000, Pakistan						
M. Gul
The University of Lahore
							Autor responsável pela correspondência
							Email: jetp@kapitza.ras.ru
				                					                																			                												                								Lahore-54000, Pakistan						
Bibliografia
- A.V. Filippenko and A.G. Riess, Phys. Rep. 307, 31 (1998)
- M. Tegmark, M.A. Strauss, M.R. Blanton, K. Abazajian, S. Dodelson, H. Sandvik, X. Wang, D.H. Weinberg, I. Zehavi, N.A. Bahcall, and F. Hoyle, Phys. Rev. D 69, 103501 (2004).
- A.D. Felice and S.R. Tsujikawa, Living Rev. Relativ. 13, 3 (2010)
- S. Nojiri and S.D. Odintsov, Phys. Rep. 505, 59 (2011).
- N. Katirci and M. Kavuk, Eur. Phys. J. Plus 129, 163 (2014).
- M. Roshan and F. Shojai, Phys. Rev. D 94, 044002 (2016).
- C.V.R. Board and J.D. Barrow, Phys. Rev. D 96, 123517 (2017).
- S. Bahamonde, M. Marciu, and P.Rudra, Phys. Rev. D 100, 083511 (2019).
- M. Sharif and M.Z. Gul, Phys. Scr. 96, 025002 (2021)
- Phys. Scr. 96, 125007 (2021)
- Chin. J. Phys. 80, 58 (2022).
- M. Sharif and M.Z. Gul, Int. J. Mod. Phys. A 36, 2150004 (2021)
- Universe 7, 154 (2021)
- Int. J. Geom. Methods Mod. Phys. 19, 2250012 (2021)
- Chin. J. Phys. 71, 365 (2021)
- Mod. Phys. Lett. A 37, 2250005 (2022).
- E. Noether, Tramp. Th. Stat, Phys 1, 189 (1918)
- T. Feroze, F.M. Mahomed, and A. Qadir, Nonlinear Dyn. 45, 65 (2006).
- S. Capozziello, M. De Laurentis, and S.D. Odintsov, Eur. Phys. J. C 72, 1434 (2012).
- S. Capozziello, R.D. Ritis, and A.A. Marino, Class. Quantum Gravity 14, 3259 (1997).
- S. Capozziello, G. Marmo, and C.P.Rubano, Int. J. Mod. Phys. D 6, 491 (1997).
- A.K. Sanyal, Phys. Lett. B 524, 177 (2002).
- U. Camci and Y. Kucukakca,: Phys. Rev. D 76, 084023 (2007).
- D. Momeni and H. Gholizade, Int. J. Mod. Phys. D 18, 1 (2009).
- Y. Kucukakca, U. Camci, and I. Semiz, Gen. Relat. Gravit. 44, 1893 (2012).
- S. Basilakos, S. Capozziello, M. De Laurentis, A. Paliathanasis, and M. Tsamparlis, Phys. Rev. D 88, 103526 (2013).
- U. Camci, Eur. Phys. J. C 74, 3201 (2014)
- J. Cosmol. Astropart. Phys. 07, 002 (2014).
- U. Camci and J. Cosmol, J. Cosmol. Astropart. Phys. 2014, 2 (2014).
- U. Camci, A. Yildirim, and I. Basaran, Astropart. Phys. 76, 29 (2016).
- S. Capozziello, S.J.G. Gionti, and D. Vernieri, J. Cosmol. Astropart. Phys. 1601, 015 (2016).
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 
