Zeeman Splitting of Excitons in GaAs/AlGaAs Quantum Wells in the Faraday Geometry
- Authors: Grigor'ev F.S.1, Chukeev M.A.2, Lovtsyus V.A.3, Efimov Y.P.2, Eliseev S.A.3
- 
							Affiliations: 
							- St. Petersburg State University
- Resource Center “Nanophotonics,” St. Petersburg State University
- Spin Optics Laboratory, St. Petersburg State University
 
- Issue: Vol 164, No 5 (2023)
- Pages: 761-769
- Section: Articles
- URL: https://cardiosomatics.ru/0044-4510/article/view/653615
- DOI: https://doi.org/10.31857/S0044451023110068
- EDN: https://elibrary.ru/PMGEIT
- ID: 653615
Cite item
Abstract
The Zeeman splitting in the GaAs/AlGaAs heterostructure is investigated experimentally. Numerical analysis performed for the wavefunctions of exciton states, which takes into account the bands of heavy holes, light holes, and the band split by the spin–orbit interaction, is the quantitative agreement with experimental data both for an exciton with a heavy hole and for that with a light hole. It is shown that for explaining the experimental values of the Zeeman splitting in the quantum well under investigation, it is necessary to take into account both the Coulomb interaction and the contribution from the three bands in the valence band. The effect of screening of exciton states by a 2D gas of electrons with concentration n ≈ 109 cm–2 is described. Numerical calculations are performed for a large range of quantum well widths and aluminum concentrations in barriers; the chart of the dependence of the effective g factor on these parameters is plotted for magnetic field B = 5 T.
About the authors
F. S. Grigor'ev
St. Petersburg State University
														Email: f.grigoriev@spbu.ru
				                					                																			                												                								198504, St. Petersburg, Russia						
M. A. Chukeev
Resource Center “Nanophotonics,” St. Petersburg State University
														Email: f.grigoriev@spbu.ru
				                					                																			                												                								198504, St. Petersburg, Russia						
V. A. Lovtsyus
Spin Optics Laboratory, St. Petersburg State University
														Email: f.grigoriev@spbu.ru
				                					                																			                												                								198504, St. Petersburg, Russia						
Yu. P. Efimov
Resource Center “Nanophotonics,” St. Petersburg State University
														Email: f.grigoriev@spbu.ru
				                					                																			                												                								198504, St. Petersburg, Russia						
S. A. Eliseev
Spin Optics Laboratory, St. Petersburg State University
							Author for correspondence.
							Email: f.grigoriev@spbu.ru
				                					                																			                												                								198504, St. Petersburg, Russia						
References
- G. E. W. Bauer and T. Ando, Phys. Rev. B 37, 3130(R) (1988).
- H. Wang, M. Jiang, R. Merlin, and D. G. Steel, Phys. Rev. Lett. 69, 804 (1992).
- N. J. Traynor, R. J. Warburton, M. J. Snelling, and R. T. Harley, Phys. Rev. B 55, 15701 (1997).
- В. Б. Тимофеев, М. Байер, А. Форхел, М. Потемски, Письма в ЖЭТФ 64, 52 (1996).
- L. M. Roth, B. Lax, and S. Zwerdling, Phys. Rev. 114, 90 (1959).
- W. Zawadzki, P. Pfe er, R. Bratschitsch et al., Phys. Rev. B 78, 245203 (2008).
- I. A. Yugova, A. Greilich, D. R. Yakovlev et al., Phys. Rev. B 75, 245302 (2007).
- W. Shichi, T. Ito, M. Ichida et al., Jpn. J. Appl. Phys. 48, 063002 (2009).
- А. А. Киселев, Л. В. Моисеев, ФТТ 38, 1574 (1996).
- J. J. Davies, D. Wolverson, V. P. Kochereshko et al., Phys. Rev. Lett. 97, 187403 (2006).
- L. C. Smith, J. J. Davies, D. Wolverson et al., Phys. Rev. B 78, 085204 (2008).
- J. J. Davies, L. C. Smith, D. Wolverson et al., Phys. Rev. B 81, 085208 (2010).
- L. C. Smith, J. J. Davies, D. Wolverson et al., Phys. Rev. B 83, 155206 (2011).
- P. S. Grigoryev, O. A. Yugov, S. A. Eliseev et al., Phys. Rev. B 93, 205425 (2016).
- М. В. Дурнев, ФТТ 56, 1364 (2014).
- M. V. Durnev, M. M. Glazov, and E. L. Ivchenko, Phys. E 44, 797 (2012).
- Д. В. Кулаковский, С. И. Губарев, Ю. Е. Лозовик, Письма в ЖЭТФ 74, 123 (2001).
- R. C. Iotti and L. C. Andreani, Phys. Rev. B 56, 3922 (1997).
- A. D'Andrea, N. Tomassini, L. Ferrari et al., J. Appl. Phys. 83, 7920 (1998).
- E. L. Ivchenko, Optical spectroscopy of semiconductor nanostructures, Springer-Verlag, New York (2004).
- E. S. Khramtsov, P. A. Belov, P. S. Grigoryev et al., J. Appl. Phys. 119, 184301 (2016).
- P. S. Grigoryev, V. G. Davydov, S. A. Eliseev et al., Phys. Rev. B 96, 155404 (2017).
- P. A. Belov, Phys. E 112, 96 (2019).
- M. A. Chukeev, A. S. Kurdyubov, V. A. Lovtcius et al., arXiv:2304.04988 (2023).
- Г. Л. Бир, Г. Е. Пикус, Симметрия и деформационные эффекты в полупроводниках, Наука, Москва (1972).
- R. T. Phillips, G. C. Nixon, T. Fujita et al., Sol. St.Comm. 98, 287 (1996).
- G. V. Astakhov, V. P. Kochereshko, D. R. Yakovlev et al., Phys. Rev. B 65, 115310 (2002).
- K. Wagner, E. Wietek, J. D. Ziegler et al., Phys. Rev. Lett. 125, 267401 (2020).
- R. A. Sergeev and R. A. Suris, Phys. St. Sol. (b) 227, 387 (2001).
- I. Bar-Joseph, Semicond Sci. Technol. 20, R29 (2005).
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 

 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					