МОЛЕКУЛЯРНАЯ ОРГАНИЗАЦИЯ СЕКРЕЦИИ МЕДИАТОРА В НЕРВНО-МЫШЕЧНЫХ СИНАПСАХ СОМАТИЧЕСКОЙ МУСКУЛАТУРЫ ДОЖДЕВОГО ЧЕРВЯ LUMBRICUS TERRESTRIS

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

В соматической мышце дождевого червяLumbricusterrestrisв зоне двигательных нервно-мышечных синапсов методами флуоресцентной микроскопии выявлено присутствие ферментов ацетилхолинэстеразы (АХЭ) и везикулярного АХ-транспортера (ВАХТ), а также α1, α2 и β1 субъединиц ионотропного никотинового АХ-рецепторно-канального комплекса (нАХР). В мышечном гомогенате показано присутствие медиатора ацетилхолина (АХ). Таким образом, в эволюционно-первичной соматической мускулатуре аннелид существует полностью сформированная холинергическая двигательная иннервация, аналогичная той, которая имеется у представителей более высокоорганизованных классов позвоночных животных, включая млекопитающих.

Об авторах

Л. Ф. Нуруллин

Казанский институт биохимии и биофизики – структурное подразделение Федерального государственного бюджетного учреждения науки “Федеральный исследовательский центр “Казанский научный центр Российской академии наук”; Казанский государственный медицинский университет

Автор, ответственный за переписку.
Email: lenizn@yandex.ru
Казань, Россия; Казань, Россия

Е. М. Волков

Казанский государственный медицинский университет

Email: euroworm@mail.ru
Казань, Россия

Список литературы

  1. Tansey EM (2006) Henry Dale and the discovery of
  2. acetylcholine. Comptes Rendus Biologies 329: 419–425.
  3. https://doi.org/10.1016/j.crvi.2006.03.012
  4. Brown DA (2019) Acetylcholine and cholinergic receptors.
  5. Brain Neurosci Adv 3: 2398212818820506.
  6. https://doi.org/10.1177/2398212818820506
  7. Zhang Y, Dai F, Chen N, Zhou D, Lee CH, Song C,
  8. Zhang Y, Zhang Z (2024) Structural insights into VAChT
  9. neurotransmitter recognition and inhibition. Cell Res 34:
  10. 665–668.
  11. https://doi.org/10.1038/s41422-024-00986-5
  12. Sinclair P, Kabbani N (2023) Ionotropic and metabotropic
  13. responses by alpha 7 nicotinic acetylcholine receptors.
  14. Pharmacol Res 197: 106975.
  15. https://doi.org/10.1016/j.phrs.2023.106975
  16. Kalamida D, Poulas K, Avramopoulou V, Fostieri E, Lagoumintzis
  17. G, Lazaridis K, Sideri A, Zouridakis M, Tzartos SJ
  18. (2007) Muscle and neuronal nicotinic acetylcholine receptors.
  19. Structure, function and pathogenicity. FEBS J
  20. 274: 3799–3845.
  21. https://doi.org/10.1111/j.1742-4658.2007.05935.x
  22. Lansdell SJ, Collins T, Goodchild J, Millar NS (2012) The
  23. Drosophila nicotinic acetylcholine receptor subunits Dα5
  24. and Dα7 form functional homomeric and heteromeric
  25. ion channels. BMC Neurosci 13: 73.
  26. https://doi.org/10.1186/1471-2202-13-73
  27. Rosenthal JS, Yuan Q (2021) Constructing and Tuning
  28. Excitatory Cholinergic Synapses: The Multifaceted Functions
  29. of Nicotinic Acetylcholine Receptors in Drosophila
  30. Neural Development and Physiology. Front Cell Neurosci
  31. 15: 720560.
  32. https://doi.org/10.3389/fncel.2021.720560
  33. Jones AK, Davis P, Hodgkin J, Sattelle DB (2007) The nicotinic
  34. acetylcholine receptor gene family of the nematode
  35. Caenorhabditis elegans: an update on nomenclature. Invert
  36. Neurosci 7: 129–131.
  37. https://doi.org/10.1007/s10158-007-0049-z
  38. Cohen E, Chatzigeorgiou M, Husson SJ, Steuer-Costa W,
  39. Gottschalk A, Schafer WR, Treinin M (2014) Caenorhabditis
  40. elegans nicotinic acetylcholine receptors are required
  41. for nociception. Mol Cell Neurosci 59: 85–96.
  42. https://doi.org/10.1016/j.mcn.2014.02.001
  43. Albeg A, Smith CJ, Chatzigeorgiou M, Feitelson DG,
  44. Hall DH, Schafer WR, Miller DM 3rd, Treinin M (2011) C.
  45. elegans multi-dendritic sensory neurons: morphology and
  46. function. Mol Cell Neurosci 46: 308–317.
  47. https://doi.org/10.1016/j.mcn.2010.10.001
  48. Barbagallo B, Prescott HA, Boyle P, Climer J, Francis MM
  49. (2010) A dominant mutation in a neuronal acetylcholine
  50. receptor subunit leads to motor neuron degeneration in
  51. Caenorhabditis elegans. J Neurosci 30: 13932–13942.
  52. https://doi.org/10.1523/jneurosci.1515-10.2010
  53. Gottschalk A, Almedom RB, Schedletzky T, Anderson SD,
  54. Yates JR 3rd, Schafer WR (2005) Identification and characterization
  55. of novel nicotinic receptor-associated proteins
  56. in Caenorhabditis elegans. EMBO J 24: 2566–2578.
  57. https://doi.org/10.1038/sj.emboj.7600741
  58. Ahmed NY, Knowles R, Dehorter N (2019) New Insights
  59. Into Cholinergic Neuron Diversity. Front Mol Neurosci
  60. 12: 204.
  61. https://doi.org/10.3389/fnmol.2019.00204
  62. He G, Li Y, Deng H, Zuo H (2023) Advances in the study
  63. of cholinergic circuits in the central nervous system. Ann
  64. Clin Transl Neurol 10: 2179–2191.
  65. https://doi.org/10.1002/acn3.51920
  66. Legay C (2018) Congenital myasthenic syndromes with
  67. acetylcholinesterase deficiency, the pathophysiological
  68. mechanisms. Ann N Y Acad Sci 1413: 104–110.
  69. https://doi.org/10.1111/nyas.13595
  70. Treinin M, Jin Y (2021) Cholinergic transmission in C. elegans:
  71. Functions, diversity, and maturation of ACh-activated
  72. ion channels. J Neurochem. 158: 1274–1291.
  73. https://doi.org/10.1111/jnc.15164
  74. ЖУРНАЛ ЭВОЛЮЦИОННОЙ БИОХИМИИ И ФИЗИОЛОГИИ том 61 № 3 2025
  75. 200 НУРУЛЛИН, ВОЛКОВ
  76. Stocker B, Bochow C, Damrau C, Mathejczyk T, Wolfenberg
  77. H, Colomb J, Weber C, Ramesh N, Duch C, Biserova
  78. NM, Sigrist S, Pfluger HJ (2018) Structural and Molecular
  79. Properties of Insect Type II Motor Axon Terminals.
  80. Front Syst Neurosci 12: 5.
  81. https://doi.org/10.3389/fnsys.2018.00005
  82. Walker RJ, Holden-Dye L, Franks CJ (1993) Physiological
  83. and pharmacological studies on annelid and nematode
  84. body wall muscle. Comp Biochem Physiol C Comp Pharmacol
  85. Toxicol 106: 49–58.
  86. https://doi.org/10.1016/0742-8413(93)90253-h
  87. Volkov EM, Nurullin LF, Volkov ME, Nikolsky EE, Vyskočil
  88. F (2011) Mechanisms of carbacholine and GABA
  89. action on resting membrane potential and Na+/K+-ATPase
  90. of Lumbricus terrestris body wall muscles. Comp Biochem
  91. Physiol A Mol Integr Physiol 158: 520–524.
  92. https://doi.org/10.1016/j.cbpa.2010.12.016
  93. Volkov EM, Nurullin LF, Nikolsky E, Vyskocil F (2007)
  94. Miniature excitatory synaptic ion currents in the earthworm
  95. Lumbricus terrestris body wall muscles. Physiol Res
  96. 56: 655–658.
  97. https://doi.org/10.33549/physiolres.931269
  98. Nurullin LF, Volkov EM (2024) Immunofluorescent Identification
  99. of Dystrophin, Actin, and Light and Heavy Myosin
  100. Chains in Somatic Cells of Earthworm Lumbricus
  101. terrestris. Cell Tiss Biol 18: 341–346.
  102. https://doi.org/10.1134/S1990519X24700287
  103. Nurullin LF, Volkov EM (2024) The Presence of Septin Proteins
  104. in the Neuromuscular Junction of Somatic Muscle in
  105. the Earthworm Lumbricus terrestris. Biophysics 69: 876–881.
  106. https://doi.org/10.1134/S0006350924700969
  107. Drewes CD, Pax RA (1974) Neuromuscular physiology of
  108. the longitudinal muscle of the earthworm, Lumbricus terrestris.
  109. Effects of different physiological salines. J Exp
  110. Biol 60: 445–52.
  111. https://doi.org/10.1242/jeb.60.2.445
  112. Rodriguez-Ithurralde D, Silveira R, Barbeito L, Dajas F
  113. (1983) Fasciculin, a powerful anticholinesterase polypeptide
  114. from Dendroaspis angusticeps venom. Neurochem
  115. Int 5: 267–274.
  116. https://doi.org/10.1016/0197-0186(83)90028-1
  117. Le Du MH, Marchot P, Bougis PE, Fontecilla-Camps JC
  118. (1992) 1.9-A resolution structure of fasciculin 1, an anti-
  119. acetylcholinesterase toxin from green mamba snake
  120. venom. J Biol Chem 267: 22122–22130.
  121. https://doi.org/10.2210/pdb1fas/pdb
  122. Duran R, Cervenansky C, Dajas F, Tipton KF (1994) Fasciculin
  123. inhibition of acetylcholinesterase is prevented by
  124. chemical modification of the enzyme at a peripheral site.
  125. Biochim Biophys Acta 1201: 381–388.
  126. https://doi.org/10.1016/0304-4165(94)90066-3
  127. Kalamida D, Poulas K, Avramopoulou V, Fostieri E, Lagoumintzis
  128. G, Lazaridis K, Sideri A, Zouridakis M, Tzartos SJ
  129. (2007) Muscle and neuronal nicotinic acetylcholine receptors.
  130. Structure, function and pathogenicity. FEBS J
  131. 274: 3799–3845.
  132. https://doi.org/10.1111/j.1742-4658.2007.05935.x
  133. Ho TNT, Abraham N, Lewis RJ (2020) Structure-Function
  134. of Neuronal Nicotinic Acetylcholine Receptor Inhibitors
  135. Derived From Natural Toxins. Front Neurosci
  136. 14: 609005.
  137. https://doi.org/10.3389/fnins.2020.609005
  138. Sloan MA, Reaves BJ, Maclean MJ, Storey BE, Wolstenholme
  139. AJ (2015) Expression of nicotinic acetylcholine receptor
  140. subunits from parasitic nematodes in Caenorhabditis
  141. elegans. Mol Biochem Parasitol 204: 44–50.
  142. https://doi.org/10.1016/j.molbiopara.2015.12.006
  143. Holden-Dye L, Joyner M, O'Connor V, Walker RJ (2013)
  144. Nicotinic acetylcholine receptors: a comparison of the
  145. nAChRs of Caenorhabditis elegans and parasitic nematodes.
  146. Parasitol Int 62: 606–615.
  147. https://doi.org/10.1016/j.parint.2013.03.004
  148. Sellings L, Pereira S, Qian C, Dixon-McDougall T,
  149. Nowak C, Zhao B, Tyndale RF, van der Kooy D (2013)
  150. Nicotine-motivated behavior in Caenorhabditis elegans
  151. requires the nicotinic acetylcholine receptor subunits acr-
  152. 5 and acr-15. Eur J Neurosci 37: 743–756.
  153. https://doi.org/10.1111/ejn.12099
  154. Lansdell SJ, Collins T, Goodchild J, Millar NS (2012) The
  155. Drosophila nicotinic acetylcholine receptor subunits Dα5
  156. and Dα7 form functional homomeric and heteromeric
  157. ion channels. BMC Neurosci 13: 73.
  158. https://doi.org/10.1186/1471-2202-13-73
  159. Elwary SM, Chavan B, Schallreuter KU (2006) The vesicular
  160. acetylcholine transporter is present in melanocytes
  161. and keratinocytes in the human epidermis. J Invest Dermatol
  162. 126: 1879–1884.
  163. https://doi.org/10.1038/sj.jid.5700268
  164. Banzai K, Adachi T, Izumi S (2015) Comparative analyses
  165. of the cholinergic locus of ChAT and VAChT and its expression
  166. in the silkworm Bombyx mori. Comp Biochem
  167. Physiol B Biochem Mol Biol 185: 1–9.
  168. https://doi.org/10.1016/j.cbpb.2015.03.001
  169. Schafer MK, Weihe E, Varoqui H, Eiden LE, Erickson JD
  170. (1994) Distribution of the vesicular acetylcholine transporter
  171. (VAChT) in the central and peripheral nervous systems
  172. of the rat. J Mol Neurosci 5: 1–26.
  173. https://doi.org/10.1007/bf02736691
  174. Maeda M, Ohba N, Nakagomi S, Suzuki Y, Kiryu-Seo S,
  175. Namikawa K, Kondoh W, Tanaka A, Kiyama H (2004) Vesicular
  176. acetylcholine transporter can be a morphological
  177. marker for the reinnervation to muscle of regenerating
  178. motor axons. Neurosci Res 48: 305–314.
  179. https://doi.org/10.1016/j.neures.2003.11.008
  180. Alfonso A, Grundahl K, Duerr JS, Han HP, Rand JB (1993)
  181. The Caenorhabditis elegans unc-17 gene: a putative vesicular
  182. acetylcholine transporter. Science 261: 617–619.
  183. https://doi.org/10.1126/science.8342028
  184. Schwarz J, Bringmann H (2017) Analysis of the NK2
  185. homeobox gene ceh-24 reveals sublateral motor neuron
  186. control of left-right turning during sleep. Elife 6: e24846.
  187. https://doi.org/10.7554/elife.24846
  188. Mathews EA, Mullen GP, Hodgkin J, Duerr JS, Rand JB
  189. (2012) Genetic interactions between UNC-17/VAChT
  190. and a novel transmembrane protein in Caenorhabditis elegans.
  191. Genetics 192: 1315–1325.
  192. https://doi.org/10.1534/genetics.112.145771
  193. Pezzementi L, Chatonnet A (2010) Evolution of cholinesterases
  194. in the animal kingdom. Chem Biol Interact 187: 27–33.
  195. https://doi.org/10.1016/j.cbi.2010.03.043
  196. De Boer D, Nguyen N, Mao J, Moore J, Sorin EJ (2021) A
  197. Comprehensive Review of Cholinesterase Modeling and
  198. Simulation. Biomolecules 11: 580.
  199. https://doi.org/10.3390/biom11040580
  200. ЖУРНАЛ ЭВОЛЮЦИОННОЙ БИОХИМИИ И ФИЗИОЛОГИИ том 61 № 3 2025
  201. МОЛЕКУЛЯРНАЯ ОРГАНИЗАЦИЯ СЕКРЕЦИИ МЕДИАТОРА В НЕРВНО-МЫШЕЧНЫХ... 201
  202. Huchard E, Martinez M, Alout H, Douzery EJ, Lutfalla G,
  203. Berthomieu A, Berticat C, Raymond M, Weill M (2006)
  204. Acetylcholinesterase genes within the Diptera: takeover
  205. and loss in true flies. Proc Biol Sci 273: 2595–2604.
  206. https://doi.org/10.1098/rspb.2006.3621
  207. Cha DJ, Lee SH (2015) Evolutionary origin and status of
  208. two insect acetylcholinesterases and their structural conservation
  209. and differentiation. Evol Dev 17: 109–119.
  210. https://doi.org/10.1111/ede.12111
  211. Grauso M, Culetto E, Combes D, Fedon Y, Toutant JP, Arpagaus
  212. M (1998) Existence of four acetylcholinesterase
  213. genes in the nematodes Caenorhabditis elegans and Caenorhabditis
  214. briggsae. FEBS Lett 424: 279–284.
  215. https://doi.org/10.1016/s0014-5793(98)00191-4
  216. Combes D, Fedon Y, Toutant JP, Arpagaus M (2001) Acetylcholinesterase
  217. genes in the nematode Caenorhabditis
  218. elegans. Int Rev Cytol 209: 207–239.
  219. https://doi.org/10.1016/s0074-7696(01)09013-1
  220. Wu L, Hiebert LS, Klann M, Passamaneck Y, Bastin BR,
  221. Schneider SQ, Martindale MQ, Seaver EC, Maslakova SA,
  222. Lambert JD (2020) Genes with spiralian-specific protein
  223. motifs are expressed in spiralian ciliary bands. Nat Commun
  224. 11: 4171.
  225. https://doi.org/10.1038/s41467-020-17780-7
  226. Budd GE, Jensen S (2017) The origin of the animals and a
  227. 'Savannah' hypothesis for early bilaterian evolution. Biol
  228. Rev Camb Philos Soc 92: 446–473.
  229. https://doi.org/10.1111/brv.12239
  230. Burkhardt P, Jekely G (2021) Evolution of synapses and
  231. neurotransmitter systems: The divide-and-conquer model
  232. for early neural cell-type evolution. Curr Opin Neurobiol
  233. 71: 127–138.
  234. https://doi.org/10.1016/j.conb.2021.11.002
  235. Moroz LL, Romanova DY, Kohn AB (2021) Neural versus
  236. alternative integrative systems: molecular insights into
  237. origins of neurotransmitters. Philos Trans R Soc Lond B
  238. Biol Sci 376: 20190762.
  239. https://doi.org/10.1098/rstb.2019.0762
  240. Horiuchi Y, Kimura R, Kato N, Fujii T, Seki M, Endo T,
  241. Kato T, Kawashima K (2003) Evolutional study on acetylcholine
  242. expression. Life Sci. 72: 1745–1756.
  243. https://doi.org/10.1016/s0024-3205(02)02478-5
  244. Picciotto MR, Higley MJ, Mineur YS (2012) Acetylcholine
  245. as a neuromodulator: cholinergic signaling shapes nervous
  246. system function and behavior. Neuron 76: 116–129.
  247. https://doi.org/10.1016/j.neuron.2012.08.036
  248. Brown DA (2019) Acetylcholine and cholinergic receptors.
  249. Brain Neurosci Adv 3: 2398212818820506.
  250. https://doi.org/10.1177/2398212818820506
  251. Izquierdo PG, Calahorro F, Thisainathan T, Atkins JH,
  252. Haszczyn J, Lewis CJ, Tattersall JEH, Green AC, Holden-
  253. Dye L, O'Connor V (2022) Cholinergic signaling at the
  254. body wall neuromuscular junction distally inhibits feeding
  255. behavior in Caenorhabditis elegans. J Biol Chem 298: 101466.
  256. https://doi.org/10.1016/j.jbc.2021.101466
  257. Langeloh H, Wasser H, Richter N, Bicker G, Stern M (2018)
  258. Neuromuscular transmitter candidates of a centipede
  259. (Lithobius forficatus, Chilopoda). Front Zool 15: 28.
  260. https://doi.org/10.1186/s12983-018-0274-9
  261. Stern M, Bicker G (2008) Mixed cholinergic/glutamatergic
  262. neuromuscular innervation of Onychophora: a combined
  263. histochemical/electrophysiological study. Cell Tissue
  264. Res 333: 333–338.
  265. https://doi.org/10.1007/s00441-008-0638-0
  266. Katz B, Miledi R (1977) Transmitter leakage from motor
  267. nerve endings. Proc R Soc Lond B Biol Sci 196: 59–72.
  268. https://doi.org/10.1098/rspb.1977.0029
  269. Egge N, Arneaud SLB, Fonseca RS, Zuurbier KR, McClendon
  270. J, Douglas PM (2021) Trauma-induced regulation of
  271. VHP-1 modulates the cellular response to mechanical
  272. stress. Nat Commun 12: 1484.
  273. https://doi.org/10.1038/s41467-021-21611-8
  274. Hocking AM, Gibran NS (2010) Mesenchymal stem cells:
  275. paracrine signaling and differentiation during cutaneous
  276. wound repair. Exp Cell Res 316: 2213–2219.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025