Quantum-Chemical Modeling of Ag/CeO2 Nanoscale Catalysts
- Authors: Shor E.A.1, Shor A.M.1, Nasluzov V.A.1
- 
							Affiliations: 
							- Krasnoyarsk Scientific Center, Institute of Chemistry and Chemical Technology, Siberian Branch of the Russian Academy of Sciences
 
- Issue: Vol 97, No 5 (2023)
- Pages: 634-644
- Section: ФИЗИКА И ХИМИЯ ЭЛЕМЕНТАРНЫХ ХИМИЧЕСКИХ ПРОЦЕССОВ
- Submitted: 27.02.2025
- Published: 01.05.2023
- URL: https://cardiosomatics.ru/0044-4537/article/view/668736
- DOI: https://doi.org/10.31857/S0044453723050242
- EDN: https://elibrary.ru/HMJLRS
- ID: 668736
Cite item
Abstract
The authors summarize results from calculations using the density functional theory for atoms and small silver clusters on surfaces of nanostructured cerium(IV) oxide, along with the adsorption and transformations of O2 and CO molecules on these systems. Stoichiometric Ce21O42, which has {100} and {111} nanofacets with adsorption centers containing four and three oxygen atoms, is used to model surfaces of cerium oxide. It is shown the O4-center is a center of the selective adsorption of metal atoms. A silver atom on an O3‑center is less stable but it shows a greater ability to activate an O2 molecule. Results from calculations on the {100} and {111} faces of Ce21O42 nanoparticles are compared to data for infinite CeO2(100) and CeO2(111) surfaces. The efficiency of Ag/Ce21O42 atomic complexes is shown in the oxidation of carbon monoxide.
Keywords
About the authors
E. A. Shor
Krasnoyarsk Scientific Center, Institute of Chemistry and Chemical Technology, Siberian Branch of the Russian Academy of Sciences
														Email: eshor1977@gmail.com
				                					                																			                												                								660036, Krasnoyarsk, Russia						
A. M. Shor
Krasnoyarsk Scientific Center, Institute of Chemistry and Chemical Technology, Siberian Branch of the Russian Academy of Sciences
														Email: eshor1977@gmail.com
				                					                																			                												                								660036, Krasnoyarsk, Russia						
V. A. Nasluzov
Krasnoyarsk Scientific Center, Institute of Chemistry and Chemical Technology, Siberian Branch of the Russian Academy of Sciences
							Author for correspondence.
							Email: eshor1977@gmail.com
				                					                																			                												                								660036, Krasnoyarsk, Russia						
References
- Muravev V., Simons J.F.M., Parastaev A. et al. // Angew. Chem. Int. Ed. 2022. V. 61. e202200434.
- Boronin A.I., Slavinskaya E.M., Figueroba A. et al. // Appl. Catal. B Env. 2021. V. 286. 119931.
- Grabchenko M.V., Mamontov G.V., Zaikovskii V.I. et al. // Ibid. 2020. V. 260. 118148.
- Kibis L.S., Svintsitskiy D.A., Kardash T.Yu. et al. // Appl. Cat. A.: Gen. 2019. V. 570. P. 51.
- Bera P., Patil K.C., Hegde M.S. // Phys. Chem. Chem. Phys. 2000, V. 2. P. 3715.
- Guo C., Wei S., Zhou S. et al. // ACS Appl. Mater. Interfaces 2017. V. 9. P. 26107.
- Carraro F., Fapohunda A., Paganini M.C. et al. // ACS Appl. Nano Mater. 2018. V. 1. P. 1492.
- Fan L., Fujimoto K. // J. Catal. 1997. V. 172. P. 238.
- Farmer J.A., Campbell C.T. // Science. 2010. V. 329. P. 933.
- Spezzati G., Su Y., Hofmann J.P. et al. // ACS Catal. 2017. V. 7. P. 6887.
- Machida M., Murata Y., Kishikawa K. et al. // Chem. Mater. 2008. V. 20. P. 4489.
- Pentyala P., Deshpande P.A // Ind. Eng. Chem. Res. 2019. V. 58. P. 7964.
- Liberto G., Tosoni S., Cipriano L.A. et al. // Acc. Mater. Res. 2022. V. 3. P. 986.
- Paier J., Penschke C., Sauer J. // Chem. Rev. 2013. V. 113. P. 3949.
- Spezzati G., Benavidez A.D., DeLaRiva A.T. et al. // Appl. Catal. B 2019. V. 243. P. 36.
- Branda M.M., Ferrulo R.M., Causà M. et al. // J. Phys. Chem. C. 2011. V. 115. P. 3716.
- Sun C., Li H., Chen L. // Energy Environ. Sci. 2012. V. 5. P. 8475.
- Bruix A., Lykhach Y., Matolínová I. et al. // Angew. Chem. Int. Ed. 2014. V. 53. P. 10525.
- Figueroba A., Kovács G., Bruix A. et al. // Catal. Sci. Technol. 2016. V. 6. P. 6806.
- Sk M.A., Kozlov S.M., Lim K.H. et al. // J. Mater. Chem. A. 2014. V. 2. P. 18329.
- Kozlov S.M., Neyman K.M. // Phys. Chem. Chem. Phys. 2014. V. 16. P. 7823.
- Bruix A., Neyman K.M. How to design models for ceria nanoparticles: challenges and strategies for describing nanostructured reducible oxides. In: Computational Modelling of Nanoparticles. Eds. S.T. Bromley, S.M. Woodley, Series: V. 12: Frontiers of Nanoscience, Oxford: Elsevier. 2019. P. 55–99.
- Migani A., Vaysilov G.N., Bromley S.T. et al. // J. Mater. Chem. 2011. V. 20. P. 10535.
- Boronat M., López-Ausens T., Corma A. // Surf. Sci. 2016. V. 648. P. 212.
- Kresse G. // Phys. Rev. B. 1993. V. 47. P. 558.
- Kresse G. // Ibid. 1996. V. 54. P. 11169.
- Blöchl P.E. // Ibid. B. 1994. V. 50. P. 17953.
- Kresse G., Joubert D. // Phys. Rev. B. 1999. V. 59. P. 1758.
- Rohrbach A., Hafner J., Kresse G. // J. Phys.: Condens. Matter. 2003. V. 15. P. 979.
- Perdew J.P., Chevary J.A., Vosko S.H. et al. // Phys. Rev. B. 1992. V. 46. P. 6671; Erratum. Phys. Rev. B. 1993. V. 48. P. 4978.
- Vayssilov G.N., Migani A., Neyman K. // J. Phys. Chem. C. V. 2011. V. 115 P. 16081.
- Bruix A., Migani A., Vayssilov G.N. // Phys. Chem. Chem. Phys. 2011. V. 13. P. 11384.
- Migani A., Vayssilov G.N., Bromley S.T. // Chem. Comm. 2010. V. 46. P. 5936.
- Branda M.M., Hernández N.C., Sanz J.F. et al. // J. Phys. Chem. C. 2010. V. 114. P. 1934.
- Monkhorst H.J., Pack J.D. // Phys. Rev. B. 1976. V. 13. P. 5188.
- Nasluzov V.A., Ivanova-Shor E.A., Shor A.M. et al. // Surf. Sci. 2019. V. 681. P. 38.
- Chen L.-J., Tang Y., Cui L. et al. // J. Power Sources. 2013. V. 234. P. 69.
- Tang Y., Zhang H., Cui L. et al. // Ibid. 2012. V. 197. P. 28.
- Preda G., Pacchioni G. // Catal. Today. 2011. V. 177 P. 31.
- Shor A.M., Laletina S.S., Ivanova-Shor E.A. et al. // Comp. Theor. Chem. 2018. V. 1144. P. 56.
- Klacar S., Hellman A., Panas I. et al. // J. Phys. Chem. C. 2010. V. 114. P. 12610.
- Benedetti F., Luches P., Spadaro M.C. et al. // J. Phys. Chem. C. 2015. V. 119. P. 6024.
- Наслузов В.А., Нейман К., Шор А.М. и др. // Ж. СФУ. Сер. Химия. 2016. Т. 9. С. 281.
- Zhao Y., Teng B.-T., Wen X.-D. et al. // J. Phys. Chem. C. 2012. V. 116. P. 15986.
- Preda G., Migani A., Neyman K.M. et al. // Ibid. 2011. V. 115. P. 5817.
- Shor A.M., Laletina S.S., Ivanova-Shor E.A. et al. // Surf. Sci. 2014. V. 630. P. 265.
- Shimizu K., Kawachi H., Satsuma A. // Appl. Catal. B. 2010. V. 96. P. 169.
- Nasluzov V.A., Ivanova-Shor E.A., Shor A.M. et al. // Materials. 2021. V. 14. 6888.
- Hulva J., Meier M., Bliem R. et al. // Science. 2021. V. 371. P. 375.
- Wu Z., Li M., Overbury S.H. // J. Catal. 2012. V. 285. P. 61.
- Chen S., Cao T., Gao Y. et al. // J. Phys. Chem. C 2016. V. 120. P. 21472.
- Binet C., Badri A., Boutonnet-Kizling M. et al. // J. Chem. Soc. Faraday Trans. 1994. V. 90. P. 1023.
- Kafafi Z.H., Hauge R.H., Billups W.E. et al. // Inorg. Chem. 1984. V. 23. P. 177.
- Vayssilov G.N., Mihaylov M., Petkov P.S. et al. // J. Phys. Chem. C. 2011. V. 115. P. 23435.
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					




