Self-Diffusion of Ferulic and Sinapic Acids in the Binary Carbon Tetrachloride–Acetone-d6 System
- Autores: Golubev V.A.1, Gurina D.L.1
- 
							Afiliações: 
							- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences
 
- Edição: Volume 97, Nº 2 (2023)
- Páginas: 247-251
- Seção: PHYSICAL CHEMISTRY OF SOLUTIONS
- ##submission.dateSubmitted##: 27.02.2025
- ##submission.datePublished##: 01.02.2023
- URL: https://cardiosomatics.ru/0044-4537/article/view/668837
- DOI: https://doi.org/10.31857/S0044453723020061
- EDN: https://elibrary.ru/DRIXVM
- ID: 668837
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
1H NMR with a pulsed magnetic field gradient method are used to measure the coefficients of self-diffusion of ferulic and sinapic acids in binary carbon tetrachloride–acetone-d6 solvent at temperatures of 278 and 298 K. Data show that the acids’ coefficients of self-diffusion grow along with the concentration of acetone-d6 and temperature. It is shown that the effective hydrodynamic radii of acids do not depend on the composition of the binary solvent within the experimental error. In light of molecular association, this behavior can be explained by the competition between two processes: acid–acetone heteroassociation and acid–acid self-association.
Palavras-chave
Sobre autores
V. Golubev
G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences
														Email: vag@isc-ras.ru
				                					                																			                												                								153045, Ivanovo, Russia						
D. Gurina
G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: vag@isc-ras.ru
				                					                																			                												                								153045, Ivanovo, Russia						
Bibliografia
- Sun Y., Li Sh., Song H. et al. // Natural Product Research. 2006. V. 20 (9). P. 835. https://doi.org/10.1080/14786410500462579
- Ju H.S., Li X.J., Zhao B.L. et al. // Acta Pharmacol. Sin. 1990. V. 11. P. 466.
- Meng S., Lu Z. J., Zhang Z.N. et al. // Chin. Pharmacol. Bull. 1994. V. 10. P. 439.
- Kikuzaki H., Hisamoto M., Hirose K. et al. // J. Agricultural and Food Chemistry. 2002. V. 50. P. 2161. https://doi.org/10.1021/jf011348w
- Kumar N., Pruthi V. // Biotechnol. Rep. 2014. V. 4. P. 86.
- El-Seedi H.R., El-Said A.M.A., Khalifa S.A.M. et al. // J. Agric. Food Chem. 2012. V. 60. P. 10877. https://doi.org/10.1021/jf301807g
- Puupponen-Pimia R., Nohynek L., Alakomi H.-L. et al. // Appl. Microbiol. Biotechnol. 2005. V. 67. P. 8. https://doi.org/10.1007/s00253-004-1817-x
- Lay H.L., Shih I.J., Yeh C.H. et al. // J. Food Drug Anal. 2000. V. 8. P. 304.
- Pereira C.G., Meireles M.A.A. // Food Bioprocess Technol. 2010 V. 3. P. 340. https://doi.org/10.1007/s11947-009-0263-2
- Yamamoto M., Iwai Y., Nakajima T. et al. // J. Phys. Chem. A. 1999. V. 103. P. 3525. https://doi.org/10.1021/jp984604p
- Ke J., Jin Sh., Han B. et al. // J. Supercrit. Fluids. 1997. V. 11. P. 53. https://doi.org/10.1016/S0896-8446(97)00029-6
- Gohres J.L., Shukla C.L., Popov A.V. et al. // J. Phys. Chem. B. 2008. V. 112. P. 14993. https://doi.org/10.1021/jp806135s
- Gurina D.L., Antipova M.L., Odintsova E.G. et al. // J. Supercrit. Fluids. 2018. V. 139. P. 19. https://doi.org/10.1016/j.supflu.2018.05.004
- Gurina D.L., Antipova M.L., Odintsova E.G. et al. // Ibid. 2017. V. 126. P. 47. https://doi.org/10.1016/j.supflu.2017.02.008
- Gurina D.L., Odintsova E.G., Golubev V.A. et al. // Ibid. 2017. V. 124. P. 50.https://doi.org/10.1016/j.supflu.2017.01.012
- Golubev V.A., Gurina D.L. // Russ. J. Phys. Chem. A. 2019. V. 93. P. 447. https://doi.org/10.1134/S0036024419030075
- Price W.S. NMR Studies of Translational Motion: Principles and Applications. Cambridge University Press: Cambridge, 2009. 393 p.
- Hardt A.P., Anderson D.K., Rathbun R. et al. // J. Phys. Chem. 1959. V. 63. P. 2059. https://doi.org/10.1021/j150582a021
- Golubev V.A., Gurina D.L. // J. Mol. Liq. 2019. V. 283. P. 1. https://doi.org/10.1016/j.molliq.2019.03.038
- Vignes A. // Ind. Eng. Chem. Fundam. 1966. V. 5. P. 189. https://doi.org/10.1021/i160018a007
- Golubev V.A. // J. Mol. Liq. 2020. V. 305. P. 112813. https://doi.org/10.1016/j.molliq.2020.112813
- Monakhova Yu.B., Pozharov M.V., Zakharova T.V. et al. // J. Solution. Chem. 2014. V. 43. P. 1963. https://doi.org/10.1007/s10953-014-0249-1
- Macchioni A., Ciancaleoni G., Zuccaccia C., Zuccaccia D. // Chem. Soc. Rev. 2008. V. 37. P. 479. https://doi.org/10.1039/B615067P
- Крестов Г.А., Афанасьев В.Н., Ефремова Л.С. Физико-химические свойства бинарных растворителей. Л.: Химия, 1988. 688 с.
- Holz M., Mao X., Seiferling D. // J. Chem. Phys. 1996. V. 104. P. 669. https://doi.org/10.1063/1.470863
- Golubev V.A., Gurina D.L., Kumeev R.S. // Russ. J. Phys. Chem. A. 2018. V. 92. P. 75. https://doi.org/10.1134/S0036024418010090
- Golubev V.A., Kumeev R.S., Gurina D.L. et al. // J. Mol. Liq. 2017. V. 241. P. 922. https://doi.org/10.1016/j.molliq.2017.06.102
- Golubev V.A. // Ibid. 2018. V. 264. P. 314. https://doi.org/10.1016/j.molliq.2018.05.083
- Golubev V.A., Gurina D.L. // Ibid. 2021. V. 326. P. 115230. https://doi.org/10.1016/j.molliq.2020.115230
- Cabrita E.J., Berger S. // Magn. Reson. Chem. 2001. V. 39. P. 142. https://doi.org/10.1002/mrc.917
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 





