Kinetic model of the temperature-programmed desorption of ammonia to study the acidity of heterogeneous catalysts
- Autores: Lysikov A.I.1,2, Vdovichenko V.A.1,2, Vorob’eva E.E.1,2, Shamanaeva I.A.1,2, Luzina E.V.1,2, Piryutko L.V.1, Veselovskaya Z.V.1,2, Parkhomchuk E.V.1,2
- 
							Afiliações: 
							- Boreskov Institute of Catalysis SB RAS (IC SB RAS)
- Novosibirsk State University (NSU)
 
- Edição: Volume 99, Nº 1 (2025)
- Páginas: 50-67
- Seção: CHEMICAL KINETICS AND CATALYSIS
- ##submission.dateSubmitted##: 01.06.2025
- ##submission.datePublished##: 17.04.2025
- URL: https://cardiosomatics.ru/0044-4537/article/view/681868
- DOI: https://doi.org/10.31857/S0044453725010053
- EDN: https://elibrary.ru/EISYVY
- ID: 681868
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
A new method for processing the results of the temperature-programmed desorption (TPD) of ammonia from heterogeneous catalyst surfaces and an approach for automatic deconvolution of TPD kinetic curves are proposed. This method uses the Polanyi-Wigner kinetic model with formal kinetics approaches for simple reactions, which imposes restrictions on the observed orders of 1, 2, or 3. The parameters of TPD curves are selected based on the inverse simulation using the Runge-Kutta method and fitting them to experimental points using dynamic model parameters changes. As an example, several heterogeneous catalysts are presented in this work. TPD-NH3 of titanium silicalite-1 and silicalite-1 is obtained using one third-order desorption kinetic equation. TPD-NH3 of the three samples of γ-alumina is obtained using two desorption peaks with similar kinetic parameters.
Texto integral
 
												
	                        Sobre autores
A. Lysikov
Boreskov Institute of Catalysis SB RAS (IC SB RAS); Novosibirsk State University (NSU)
							Autor responsável pela correspondência
							Email: lyanig@catalysis.ru
				                					                																			                												                	Rússia, 							Novosibirsk, 630090; Novosibirsk, 630090						
V. Vdovichenko
Boreskov Institute of Catalysis SB RAS (IC SB RAS); Novosibirsk State University (NSU)
														Email: lyanig@catalysis.ru
				                					                																			                												                	Rússia, 							Novosibirsk, 630090; Novosibirsk, 630090						
E. Vorob’eva
Boreskov Institute of Catalysis SB RAS (IC SB RAS); Novosibirsk State University (NSU)
														Email: lyanig@catalysis.ru
				                					                																			                												                	Rússia, 							Novosibirsk, 630090; Novosibirsk, 630090						
I. Shamanaeva
Boreskov Institute of Catalysis SB RAS (IC SB RAS); Novosibirsk State University (NSU)
														Email: lyanig@catalysis.ru
				                					                																			                												                	Rússia, 							Novosibirsk, 630090; Novosibirsk, 630090						
E. Luzina
Boreskov Institute of Catalysis SB RAS (IC SB RAS); Novosibirsk State University (NSU)
														Email: lyanig@catalysis.ru
				                					                																			                												                	Rússia, 							Novosibirsk, 630090; Novosibirsk, 630090						
L. Piryutko
Boreskov Institute of Catalysis SB RAS (IC SB RAS)
														Email: lyanig@catalysis.ru
				                					                																			                												                	Rússia, 							Novosibirsk, 630090						
Zh. Veselovskaya
Boreskov Institute of Catalysis SB RAS (IC SB RAS); Novosibirsk State University (NSU)
														Email: lyanig@catalysis.ru
				                					                																			                												                	Rússia, 							Novosibirsk, 630090; Novosibirsk, 630090						
E. Parkhomchuk
Boreskov Institute of Catalysis SB RAS (IC SB RAS); Novosibirsk State University (NSU)
														Email: lyanig@catalysis.ru
				                					                																			                												                	Rússia, 							Novosibirsk, 630090; Novosibirsk, 630090						
Bibliografia
- Da Ros S., Barbosa-Coutinho E., Schwaab M. et al. // Mater. Charact. 2013. V. 80. P. 50.
- Phung T.K., Garbarino G. // J. Ind. Eng. Chem. 2017. V. 47. P. 288.
- Yashnik S.A., Boltenkov V.V., Babushkin D.E. et al. // Kinet. Catal. 2022. V. 63. P. 555.
- Cvetanoviĉ R.J., Amenomiya Y. // Adv. Catal. 1972. V. 6. P. 21.
- Amenomiya Y., Chenier J.H.B., Cvetanović R.J. // J. Phys. Chem. 1964. V. 68. P. 52.
- Serebrennikov D.V., Grigor’eva N.G., Khazipova A.N. et al. // Kinet. Catal. 2022. V. 63. P. 577.
- Wu L., Su H., Liu Q. et al. // Ibid. 2022. V. 63. P. 498.
- Busca G. // Chem. Rev. 2007. V. 107. P. 5366.
- Kim C., Yan X.M., White J.M. // Rev. Sci. Instrum. 2000. V. 71. P. 3502.
- Kechagiopoulos P.N., Thybaut J.W., Marin G.B. // Ind. Eng. Chem. 2014. V. 53. P. 1825.
- Cvetanović R.J., Amenomiya Y. // Adv. Catal. 1967. V. 17. P. 103.
- Rodríguez-González L., Hermes F., Bertmer M. et al. // Appl. Catal. A Gen. 2007. V. 328. P. 174.
- Schwarz J.A. // Catal. Rev. – Sci. Eng. 1983. V. 25. P. 141.
- Bhatia S., Beltramini J., Do D.D. // Catal. Today. 1990. V. 7. P. 309.
- Kanervo J.M., Krause A.O.I. // J. Phys. Chem. B. 2001. V. 105. P. 9778.
- Russell N.M., Ekerdt J.G. // Surf. Sci. 1996. V. 364. P. 199–218.
- Niwa M., Katada N. // Chem. Rec. 2013. V. 13. P. 432.
- Da Ros S., Valter Flores K.A., Schwaab M. et al. // J. Ind. Eng. Chem. 2021. V. 94. P. 425.
- Xu J., Deng J. // ACS Omega. 2020. V. 5. P. 4148.
- Campbell C.T., Sellers J.R.V. // Chem. Rev. 2013. V. 113. P. 4106.
- King D.A. // Surf. Sci. 1975. V. 47. P. 384.
- Parmon V. Thermodynamics of non-equilibrium processes for chemists with a particular application to catalysis // Elsevier. 2010.
- Sidoumou M., Panella V., Suzanne J. // J. Chem. Phys. 1998. V. 101. P. 6338.
- Schmid M., Parkinson G.S., Diebold U. // ACS Phys. Chem. Au. 2023. V. 3. P. 44.
- Sprowl L.H., Campbell C.T., Árnadóttir L. // J. Phys. Chem. C. 2017. V. 121. P. 9655.
- Sprowl L.H., Campbell C.T., Árnadóttir L. // Ibid. 2016. V. 120. P. 9719.
- Banerjee A., Vithusha T., Krishna B.B. et al. // Bioresour. Technol. 2021. V. 340. P. 125534.
- Vyazovkin S., Burnham A.K., Favergeon L. et al. // Thermochim. Acta. 2020. V. 689. P. 178597.
- Luzina E.V., Shamanaeva I.A., Parkhomchuk E.V. // Pet. Chem. 2021. V. 61. P. 807.
- Veselovskaya J.V., Parunin P.D., Netskina O.V. et al. // Energy. 2018. V. 159. P. 766.
- Semeykina V.S., Polukhin A.V., Lysikov A.I. et al. // Catal. Letters. 2019 V. 3. P. 513.
- Parkhomchuk E.V., Fedotov K.V., Lysikov A.I. et al. // Catal. Ind. 2022. V. 14. P. 86.
- Dormand J.R., Prince P.J. // J. Comput. Appl. Math. 1980. V. 6. P. 19.
- Shampine L.F., Reichelt M.W., Sci S.J. // Soc. Ind. Appl. Math. 1997. V. 18. P. 1.
- Ламберов А.А., Халилов И.Ф., Ильясов И.Р. и др. // Вестн. Казанского Технологического Университета. 2011. № 13. С. 24
- Ye Y.L., Fu M.Q., Chen H.L. et al. // J. Fuel Chem. Technol. 2020. V. 48. P. 311.
- Efstathiou A.M., Fliatoura K. // Appl. Catal. B, Environ. 1995. V. 6. P. 35.
- Guo R., Zhou Y., Pan W. et al. // J. Ind. Eng. Chem. 2013. V. 19. P. 2022.
- Zhdanov V.P., Pavlicek J., Knor Z. // Catal. Rev. – Sci. Eng. 1988. V. 30. P. 501.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 










