Dehydration of glycerol on mordenite: a density functional theory study
- Autores: Shelyapina M.G.1, Zvereva I.A.1
- 
							Afiliações: 
							- St. Petersburg State University
 
- Edição: Volume 99, Nº 7 (2025)
- Páginas: 983-987
- Seção: CHEMICAL THERMODYNAMICS AND THERMOCHEMISTRY
- ##submission.dateSubmitted##: 17.10.2025
- ##submission.datePublished##: 15.07.2025
- URL: https://cardiosomatics.ru/0044-4537/article/view/693638
- DOI: https://doi.org/10.7868/S3034553725070026
- ID: 693638
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Calculations of the glycerol dehydration process on protonated mordenite have been carried out withing the framework of the density functional theory method on the B3LYP/6–311G level, taking into account non-covalent interactions. Both reactions considered, dehydration to acrolein and to acetol, are endothermic (27.3 and 11.7 kcal/mol, respectively). It has been shown that, unlike ZSM-5, the acetol formation pathway is more preferable for mordenite.
			                Palavras-chave
Sobre autores
M. Shelyapina
St. Petersburg State UniversitySt. Petersburg, 199034, Russia
I. Zvereva
St. Petersburg State University
														Email: irina.zvereva@spbu.ru
				                					                																			                												                								St. Petersburg, 199034, Russia						
Bibliografia
- Aprialdi F., Mujahidin D., Kadja G.T.M. // Waste Biomass Valorization. 2024. V. 15. P. 5069. https://doi.org/10.1007/s12649-024-02487-3.
- Barbosa F.F., Braga T.P. // ChemCatChem. 2023. V. 15. P. e202200950. https://doi.org/10.1002/cctc.202200950.
- Basu S., Sen A.K. // ChemBioEng Rev. 2021. V. 8. № 6. P. 633. https://doi.org/10.1002/cben.202100009.
- Li H., Xin C., Jiao X. et al. // J. Mol. Catal. A Chem. 2015. V. 402. P. 71. https://doi.org/10.1016/j.molcata.2015.03.012
- Nomanbhay S., Ong M.Y., Chew K.W. et al. // Energies. 2020. V. 13, № 6. P. 1483. https://doi.org/10.3390/en13061483.
- Aomchad V., Cristòfol À., Della Monica F., et al. // Green Chem. Royal Society of Chemistry. 2021. V. 23, № 3. P. 1077. https://doi.org/10.1039/d0gc03824e.
- Mazarío J., Concepción P., Ventura M. et al. // J. Catal. 2020. V. 385. P. 160. https://doi.org/10.1016/j.jcat.2020.03.010.
- Morales B.C.M., Quesada B.A.O. // Catal. Today. 2021. V. 372. P. 115. https://doi.org/10.1016/j.cattod.2020.11.025.
- Katryniok B., Paul S., Bellière-Baca V. et al. // Green Chem. 2010. V. 12, № 12. P. 2079. https://doi.org/10.1039/c0gc00307g.
- Lago C.D., Decolatti H.P., Tonutti L.G. et al. // J. Catal. 2018. V. 366. P. 16. https://doi.org/10.1016/j.jcat.2018.07.036.
- Zhang H., Hu Z., Huang L. et al. // ACS Catal. 2015. V. 5. № 4. P. 2548. https://doi.org/10.1021/cs5019953.
- Possato L.G., Diniz R.N., Garetto T. et al. // J. Catal. 2013. V. 300. P. 102. https://doi.org/10.1016/j.jcat.2013.01.003.
- Corma A., Huber G.W., Sauvanaud L. et al. // Ibid. 2008. V. 257. № 1. P. 163. https://doi.org/10.1016/j.jcat.2008.04.016.
- Wang Z., Wang L., Jiang Y. et al. // ACS Catal. 2014. V. 4. № 4. P. 1144. https://doi.org/10.1021/cs401225k.
- Kongpatpanich K., Nanok T., Boekfa B. et al. // Phys. Chem. Chem. Phys. 2011. V. 13. № 14. P. 6462. https://doi.org/10.1039/c0cp01720e.
- Kim Y.T., Jung K.D., Park E.D. // Appl. Catal. A Gen. 2011. V. 393. № 1–2. P. 275. https://doi.org/10.1016/j.apcata.2010.12.007.
- Ma T., Yin M., Su C. et al. // J. Ind. Eng. Chem. 2023. V. 117. P. 85. https://doi.org/10.1016/j.jiec.2022.10.043.
- Baerlocher C., McCusker L.B. Database of zeolite structures. http://www.iza-structure.org/databases
- Шеляпина М.Г., Максимова Е.П., Егоров А.В. // ЖСХ. 2024. Т. 65. № 3. С. 124080. https://doi.org/10.26902/JSC_id124080 (Shelyapina M.G., Maksimova E.P., Egorov A.V. // J. Struct. Chem. 2024. V. 65. № 3. P. 574. https://doi.org/10.1134/S0022476624030120)
- Frisch M.J., Trucks G.W.,. Schlegel H.B. et al. Gaussian 16, Revision A.03. Gaussian, Inc., Wallingford CT, 2016.
- Brandenburg J.G., Grimme S. // Top. Curr. Chem. 2014. V. 345. P. 1. https://doi.org/10.1007/128_2013_488.
- Krishnan R., Binkley J.S., Seeger R., Pople J.A. // J. Chem. Phys. 1980. V. 72. № 1. P. 650. https://doi.org/10.1063/1.438955.
- McLean A.D., Chandler G.S. // J. Chem. Phys. 1980. V. 72. № 10. P. 5639. https://doi.org/10.1063/1.438980.
- Yoda E., Ootawa A. // Appl. Catal. A Gen. 2009. V. 360. № 1. P. 66. https://doi.org/10.1016/j.apcata.2009.03.009.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 
