Calculating Vertical Ionization Energies of Hydrated Biological Chromophores Based on Multiconfigurational Perturbation Theory
- Autores: Boichenko A.N.1, Bochenkova A.V.1
- 
							Afiliações: 
							- Department of Chemistry, Lomonosov Moscow State University
 
- Edição: Volume 97, Nº 4 (2023)
- Páginas: 559-564
- Seção: PHOTOCHEMISTRY, MAGNETOCHEMISTRY, MECHANOCHEMISTRY
- ##submission.dateSubmitted##: 27.02.2025
- ##submission.datePublished##: 01.04.2023
- URL: https://cardiosomatics.ru/0044-4537/article/view/668774
- DOI: https://doi.org/10.31857/S0044453723040088
- EDN: https://elibrary.ru/TEEDBJ
- ID: 668774
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Here we introduce a methodology for calculating vertical detachment energies (VDE) and vertical ionization energies (VIE) of anionic and neutral chromophores in aqueous environment. The proposed method is based on the extended multiconfigurational quasidegenerate perturbation theory coupled to the explicit treatment of solvent effects in the frame of the effective fragment potential method. We show that the solvent polarization contribution must be considered for getting accurate quantitative estimations of VDEs and VIEs. The calculated values of VDE for phenolate (7.3 eV) and VIE for phenol (7.9 eV) in aqueous environment are in good agreement with the experimental results obtained using X-ray and multiphoton UV photoelectron spectroscopy. Our approach will be useful for studying processes of photoinduced electron transfer from anionic as well as neutral biological chromophores in aqueous solution.
Sobre autores
A. Boichenko
Department of Chemistry, Lomonosov Moscow State University
														Email: abochenkova@qpd.chem.msu.ru
				                					                																			                												                								Moscow, Russia						
A. Bochenkova
Department of Chemistry, Lomonosov Moscow State University
							Autor responsável pela correspondência
							Email: abochenkova@qpd.chem.msu.ru
				                					                																			                												                								Moscow, Russia						
Bibliografia
- Henley A., Fielding H.H. // Int. Rev. Phys. Chem. 2019. V. 38. P. 1.
- Bull J., Anstöter, C., Verlet J. // Nat. Commun. 2019. V. 10. P. 5820.
- Faubel M., Siefermann K.R., Liu Y. et al. // Acc. Chem. Res. 2012. V. 45. P. 120.
- Seidel R., Winter B., Bradforth S.E. // Annu. Rev. Phys. Chem. 2016. V. 67. P. 283.
- Riley J.W., Wang B., Woodhouse J.L. et al. // J. Phys. Chem. Lett. 2018. V. 9. P. 678.
- Gordon M.S., Freitag M.A., Bandyopadhyay P. et al. // J. Phys. Chem. A. 2001. V. 105. P. 293.
- Gordon M.S., Fedorov D.G., Pruitt S.R. et al. // Chem. Rev. 2012. V. 112. P. 632.
- Ghosh D., Isayev O., Slipchenko L.V. et al. // J. Phys. Chem. A. 2011. V. 115. P. 6028.
- Ghosh D., Roy A., Seidel R. et al. // J. Phys. Chem. B. 2012. V. 116. P. 7269.
- Henley A., Riley J., Wang B. et al. // Faraday Discuss. 2020. V. 221. P. 202.
- Granovsky A.A. // J. Chem. Phys. 2011. V. 134. P. 214113.
- Acharya A., Bogdanov A.M., Grigorenko B.L. et al. // Chem. Rev. 2017. V. 117. P. 758.
- Phillips J.C., Braun R., Wang W. et al. // J. Comp. Chem. 2005. V. 26. P. 1781.
- Granovsky A.A. Firefly version 8.2.0. http://classic.chem.msu.su/gran/firefly.
- Scholz M.S., Fortune W.G., Tau O., Fielding H.H. // J. Phys. Chem. Lett. 2022. V. 13. P. 6889.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 



