Adsorption of molybdenum(VI) and rhenium(VII) on mechanically activated graphite

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Sorption properties of mechanically activated graphite towards molybdenum and rhenium are studied for the first time. The optimal conditions are found such that the metals can be separated, and adsorption of molybdenum up to 95 % with adsorption of rhenium 3 % is achieved: nitric acid solution, pH 3 in the presence of 50 vol.% ethanol, stirring for 60 min. The maximum sorption capacity of the sorbent towards Mo(VI) according to the Langmuir model is 115 mg/g. The adsorption followed a pseudo-second order kinetics model. The sample after molybdenum adsorption is characterized by X-ray photoemission spectroscopy, X-ray diffraction, and X-ray-structural analysis, and scanning electron microscopy. The mechanical activation resulted in a decrease in the average size of graphite crystallites, an increase in the distance between layers, and a change in the surface state of carbon.

全文:

受限制的访问

作者简介

A. Korobitsyna

Institute of Metallurgy, Ural Branch of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: annakorobitsyna@mail.ru
ORCID iD: 0000-0002-7830-2274
俄罗斯联邦, Ekaterinburg, 620016

N. Pechishcheva

Institute of Metallurgy, Ural Branch of the Russian Academy of Sciences

Email: annakorobitsyna@mail.ru
ORCID iD: 0000-0002-7281-1342
俄罗斯联邦, Ekaterinburg, 620016

E. Konysheva

Institute of Metallurgy, Ural Branch of the Russian Academy of Sciences

Email: annakorobitsyna@mail.ru
ORCID iD: 0000-0003-3043-7978
俄罗斯联邦, Ekaterinburg, 620016

K. Shunyaev

Institute of Metallurgy, Ural Branch of the Russian Academy of Sciences

Email: annakorobitsyna@mail.ru
ORCID iD: 0000-0002-1530-5988
俄罗斯联邦, Ekaterinburg, 620016

参考

  1. Торшонов Д.Б., Гуляшинов А.Н., Антропова И.Г. // Фундаментальные исследования. 2005. № 9. С. 30.
  2. Петрова А.М., Касиков А.Г. // Тр. Кольского научного центра РАН. 2015. С. 190.
  3. Evdokimova O., Zaitceva P., Pechishcheva N. et al. // Curr. Anal. Chem. 2014. V. 10, № 4. P. 449. https://doi.org/10.2174/157341101004140701102351
  4. Pechishcheva N., Korobitsyna A., Ordinartsev D. et al. // Sep. Sci. Technol. 2022. V. 57. № 2. P. 180. https://doi.org/10.1080/01496395.2021.1891436
  5. Палант А.А., Трошкина И.Д., Чекмарев А.М., Костылев А.И. Технология рения. М.: ООО «Галлея-Принт», 2015. 329 с.
  6. Seo S., Choi W.S., Yang T.J. et al. // Hydrometallurgy. 2012. V. 129—130. P. 145. https://doi.org/10.1016/j.hydromet.2012.06.007
  7. Chen D., Chang H., Meng Q., Xing C. // Trans. Non Ferrous Met. Soc. China. 1993. V. 3. № 1. P. 35.
  8. Романенко А.В., Симонов П.А. Промышленный катализ в лекциях № 7. М.: Калвис, 2007. 128 с.
  9. Toteva V., Radoykova T., Tzvetkova Ch. et al. // Bulg. Chem. Commun. 2021. V. 53. № 3. P. 287. https://doi.org/10.34049/bcc.53.3.5333
  10. Хандорин Г.П., Дубов Г.И., Мазин В.И. и др. // Изв. томского политех. ун-та. 2010. Т. 316. № 3. С. 5.
  11. Pechishcheva N.V., Estemirova S. Kh., Kim А.V., P.V. et al. // Diamond Relat. Mater. 2022. V. 127. 109152. https://doi.org/10.1016/j.diamond.2022.109152
  12. Кононов В.А. // Новые огнеупоры. 2021. Т. 1. № 3. С. 3. https://doi.org/10.17073/1683-4518-2021-3-3-10
  13. Crystallography Open Database (COD). https://www.crystallography.net/cod/search.html. Последнее обращение 15 октября 2024.
  14. Hou Y., Wu J., Konysheva E. Yu. // Int. J. Hydrogen Energy. 2016. V. 41. № 6. P. 3994. https://doi.org/10.1016/j.ijhydene.2015.12.168
  15. Shlyakhtina A.V., Lyskov N.V., Konysheva E. Yu. et al. // J. Solid State Electrochem. 2020. V. 24, P. 1475. https://doi.org/10.1007/s10008-020-04574-6
  16. Toby B.H., Von Dreele R.B. // J. Appl. Crystallogr. 2013. V. 46. P. 544. https://doi.org/10.1107/S002188981300353
  17. Pagnanelli F., Ferella F., Michelis I.D., Vegliò F. // Hydrometallurgy. 2011. V. 110. P. 67. https://doi.org/10.1016/j.hydromet.2011.08.008
  18. Муханова И.М., Новикова Е.А., Минахметов Р.А. Поверхностные явления. Самара: Изд-во Самар. ун-та, 2022. 96 с.
  19. Ергожин Е.Е., Чалов Т.К., Хакимболатова К.Х. и др. // Актуальные проблемы гуманитарных и естественных наук. 2015. № 2—1. С. 54.
  20. Мельников С.С., Заболоцкий В.И., Ачох А.Р. // Сорбционные и хроматографические процессы. 2014. Т. 14. № 2. С. 312.
  21. Матвейчук Ю.В., Станишевский Д.В. // Журн. аналит. химии. 2020. Т. 75. № 6. С. 496. https://doi.org/10.31857/S0044450220040106
  22. Гольц Л.Г., Колпакова Н.А. // Изв. Томского политех. ун-та. 2006. Т. 309. № 6. С. 77.
  23. Kołczyk-Siedlecka K., Socha R.P., Yang X. et al. // Hydrometallurgy. 2023. V. 215. P. 105973. https://doi.org/10.1016/j.hydromet.2022.105973
  24. Антонов А.В., Ищенко А.А. // Изв. высших учебных заведений. Химия и химическая технология. 2007. Т. 50. № 9. С. 113.
  25. Филиппова И., Филиппова Н. Способ обработки смеси этилового спирта и воды (патент RU2107679 C1, 1996).
  26. Гайбакян Д.С., Худавердян Д.Х. // Армянский хим. журн. 1975. № 5. С. 390.
  27. Котельникова Т.А., Кузнецов Б.В., Морева А.А., Муравьева Г.П. // Сорбционные и хроматографические процессы. 2012. Т. 12. № 2. С. 295.
  28. Benzaoui T., Selatnia A., Djabali D. // Adsorpt. Sci. Technol. 2018. V. 36. № 1—2. P. 114. https://doi.org/10.1177/0263617416685099
  29. Fayos J. // J Solid State Chem. 1999. V. 148. № 2. P. 278. https://doi.org/10.1006/jssc.1999.8448
  30. Kovtun A., Jones D., Dell’Elce S. et al. // Carbon. 2019. V. 143. P. 268. https://doi.org/10.1016/j.carbon.2018.11.012
  31. Biesinger M.C. // Appl. Surf. Sci. 2022. V. 597. 153681. https://doi.org/10.1016/j.apsusc.2022.153681
  32. Ляшенко С.Е. // Успехи современного естествознания. 2017. № 1. С. 13.
  33. Hassan A., Haile A.S., Tzedakis T. et al. // ChemSusChem. 2021. V. 14. № 18. P. 3945. https://doi.org/10.1002/cssc.202100966
  34. Шеин А.Б., Габов А.Л. Физические методы исследования. Металлография, микроскопия, электронная спектроскопия. Пермь, 2023. 168 c.
  35. Shan W., Shu Y., Chen H. et al. // Hydrometallurgy. 2016. V. 165. P. 251. https://doi.org/10.1016/j.hydromet.2016.02.005
  36. Gaete J., Molina L., Alfaro I. et al. // Miner. Eng. 2019. V. 136. P. 66. https://doi.org/10.1016/j.mineng.2019.03.006
  37. Derakhshi P., Ghafourian H., Khosravi M., Rabani M. // World Appl. Sci. J. 2009. V. 7. № 2. P. 230.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. The degree of adsorption of Mo(VI) and Re(VII) on GrMA at different pH in nitric acid (a), sulfuric acid (b) media and in acetate buffer medium (c).

下载 (148KB)
3. Fig. 2. Effect of the sample weight of GrMA on the adsorption of rhenium and molybdenum. Nitric acid medium with the addition of 50 vol. % isopropyl alcohol, pH 3, CRe = CMo = 10 mg/l, V = 15 ml.

下载 (55KB)
4. Fig. 3. Kinetics of Mo(VI) adsorption on GrMA from 10 mg/l solution, m adsorbent = 0.1 g, nitric acid medium with the addition of 50 vol. % isopropyl alcohol, pH 3.

下载 (25KB)
5. Fig. 4. Adsorption isotherms of molybdenum in a nitric acid medium in the presence of: a) 50 vol. % ethyl, b) 50 vol. % isopropyl alcohol; C0 = 5-2000 mg/l, 0.1 g, 15 ml, 60 min, pH 3.

下载 (128KB)
6. Fig. 5. X-ray diffraction patterns of the initial graphite (Gr), after mechanical activation (GrMA) and after molybdenum adsorption (GrMA/Mo). Asterisks indicate the peaks of silicon used as an internal standard. The contributions of phases 1 and 2 (Table 4) are shown in the X-ray diffraction patterns.

下载 (142KB)
7. Fig. 6. C1s XPS spectra of the initial graphite Gr, after mechanical activation of GrMA and after adsorption of molybdenum GrMA/Mo; E is the binding energy.

下载 (211KB)
8. Fig. 7. O1s XPS spectra of the initial graphite Gr, after mechanical activation of GrMA and after adsorption of molybdenum GrMA/Mo.

下载 (208KB)
9. Fig. 8. Micrograph of the GrMA/Mo surface (a) with mapping of carbon (b), molybdenum (c) and oxygen (d).

下载 (554KB)

版权所有 © Russian Academy of Sciences, 2025