Влияние торсионных деформаций на спиновые состояния углеродных нанотрубок с металлической проводимостью
- Авторы: Дьячков Е.П.1, Ломакин Н.А.1, Дьячков П.Н.1
- 
							Учреждения: 
							- Институт общей и неорганической химии им. Н.С. Курнакова РАН
 
- Выпуск: Том 68, № 7 (2023)
- Страницы: 946-951
- Раздел: ТЕОРЕТИЧЕСКАЯ НЕОРГАНИЧЕСКАЯ ХИМИЯ
- URL: https://cardiosomatics.ru/0044-457X/article/view/665228
- DOI: https://doi.org/10.31857/S0044457X2370023X
- EDN: https://elibrary.ru/RIRENY
- ID: 665228
Цитировать
Полный текст
 Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Доступ платный или только для подписчиков
		                                							Доступ платный или только для подписчиков
		                                					Аннотация
Теоретически исследовано образование спиновых уровней при деформации кручения нехиральных (n, n) углеродных нанотрубок. В отсутствие механической деформации нанотрубки обладают инверсионной симметрией и металлическим типом зонной структуры с вырожденными по спину состояниями в области Ферми. Деформация кручения нарушает инверсионную симметрию, превращая трубку в хиральную систему. В результате из-за эффекта Рашбы полностью снимается вырождение уровней и формируются спиновые щели между зонами α- и β-типа.
Ключевые слова
Об авторах
Е. П. Дьячков
Институт общей и неорганической химии им. Н.С. Курнакова РАН
														Email: p_dyachkov@rambler.ru
				                					                																			                												                								Россия, 119991, Москва, Ленинский пр-т, 31						
Н. А. Ломакин
Институт общей и неорганической химии им. Н.С. Курнакова РАН
														Email: p_dyachkov@rambler.ru
				                					                																			                												                								Россия, 119991, Москва, Ленинский пр-т, 31						
П. Н. Дьячков
Институт общей и неорганической химии им. Н.С. Курнакова РАН
							Автор, ответственный за переписку.
							Email: p_dyachkov@rambler.ru
				                					                																			                												                								Россия, 119991, Москва, Ленинский пр-т, 31						
Список литературы
- Ando T. // J. Phys. Soc. Jpn. 2000. V. 69. P. 1757. https://doi.org/10.1143/JPSJ.69.1757
- Chico L., Lopez-Sancho M.P., Munoz M.C. // Phys. Rev. Lett. 2004. V. 93. P. 176402. https://doi.org/10.1103/PhysRevLett.93.176402
- Huertas-Hernando D., Guinea F., Brataas A. // Phys. Rev. B. 2006. V. 74. P. 155426. https://doi.org/10.1103/PhysRevB.74.155426
- Kuemmeth F., Ilani S., Ralph D. et al. // Nature. 2008. V. 452. P. 448. https://doi.org/10.1038/ncomms2584
- Ilani S., McEuen P.L. // Annu. Rev. Condens. Matter. Phys. 2010. V. 1. P. 1. https://doi.org/10.1146/annurev-conmatphys-070909-103928
- Jhang S.H., Marganska M., Skuorsky Y. et al. // Phys. Rev. B. 2010. V. 82. P. 041404. https://doi.org/10.1103/PhysRevB.82.041404
- Jespersen T., Grove-Rusmussen K., Paaske J. // Nature Physics. 2011. V. 7. P. 348. https://doi.org/10.1038/nphys1880
- Steele G.A., Pei F., Laird E.A. et al. // Nature Commun. 2013. V. 4. P. 1573. https://doi.org/10.1038/ncomms2584
- Wunsch B. // Phys. Rev. B. 2009. V. 79. P. 235408. https://doi.org/10.1103/PhysRevB.79.235408
- Merchant C., Markovic N. // Phys. Rev. Lett. 2008. V. 100. P. 156601. https://doi.org/10.1103/PhysRevLett.100.156601
- Wang K.Y., Blackburn A.M., Wang H.F. et al. // Appl. Phys. Lett. 2013. V. 102. P. 093508. https://doi.org/10.1063/1.4794535
- Guimaraes F.S.M., Kirwan D.F., Costa A.T. et al. // Phys. Rev. B. 2010. V. 81. P. 153408. https://doi.org/10.1103/PhysRevB.81.153408
- Flensberg K., Marcus C. // Phys. Rev. B. 2010. V. 81. P. 195418. https://doi.org/10.1103/PhysRevB.81.195418
- Gunlycke D., Jefferson J.H., Bailey S.W.D et al. // J. Phys.: Condens. Matter. 2006. V. 18. P. S843. https://doi.org/10.1088/0953-8984/18/21/S10
- Hueso L.E., Pruneda J.M., Ferrari V. // Nature. 2007. V. 445. P. 410. https://doi.org/10.1038/nature05507
- Galland C., Imamoglu A. // Phys. Rev. Lett. 2008. V. 101. P. 157404. https://doi.org/10.1103/PhysRevLett.101.157404
- Bulaev D., Trauzettel B., Loss D. // Phys. Rev. B. 2008. V. 77. P. 235301. https://doi.org/10.1103/PhysRevB.77.235301
- Laird E.A., Pei F., Kouwenhoven L.P. // Nat. Nanotechnol. 2013. V. 8. P. 565. https://doi.org/10.1038/nnano.2013.140
- Schulz A., De Martino A., Egger R. // Phys. Rev. B. 2010. V. 82. P. 033407. https://doi.org/10.1103/PhysRevB.82.033407
- Galpin M.R., Jayatilaka F.W., Logan D.E. // Phys. Rev. B. 2010. V. 81. P. 075437. https://doi.org/10.1103/PhysRevB.81.075437
- Lim J., Lopez R., Aguado R. // Phys. Rev. Lett. 2011. V. 107. P. 196801. https://doi.org/10.1103/PhysRevLett.107.196801
- Palyi A., Struck P., Rudner M. et al. // Phys. Rev. Lett. 2012. V. 108. P. 206811. https://doi.org/10.1103/PhysRevLett.108.206811
- Ohm C., Stampfer C., Splettstoesser J. et al. // Appl. Phys. Lett. 2012. V. 100. P. 143103. https://doi.org/10.1063/1.3698395
- Alam K.M., Pramanik S. // Adv. Funct. Mater. 2015. V. 25. P. 3210. https://doi.org/10.1002/adfm.201500494
- Alam K.M. Pramanik S. // Nanoscale. 2017. V. 9. P. 5155. https://doi.org/10.1039/C6NR09395G
- Rahman Md.W., Alam K.M., Pramanik S. // ACS Omega. 2018. V. 3. P. 17108. https://doi.org/10.1021/acsomega.8b02237
- Rahman Md.W., Firouzeh S., Mujica V. et al. // ACS Nano. 2020. V. 14. P. 3389. https://doi.org/10.1021/acsnano.9b09267
- Yang S.H. // Appl. Phys. Lett. 2021. V. 16. P. 120502. https://doi.org/10.1063/5.0039147
- Yang S.H., Naaman R., Paltiel Y. et al. // Nat. Rev. Phys. 2021. V. 3. P. 328. https://doi.org/10.1038/s42254-021-00302-9
- Michaeli K., Kantor-Uriel N., Naamanm R. et al. // Chem. Soc. Rev. 2016. V. 45. P. 6478. https://doi.org/10.1039/C6CS00369A
- Naaman R., Waldeck D.H. // Annu. Rev. Phys. Chem. 2015. V. 66. P. 263. https://doi.org/10.1146/annurev-physchem-040214-121554
- Joselevich E. // ChemPhysChem. 2006. V. 7. P. 1405. https://doi.org/10.1002/cphc.200600206
- D’yachkov P.N. // Russ. J. Inorg. Chem. 2021. V. 66. P. 852. https://doi.org/10.1134/S0036023621110048
- D’yachkov P.N. // Appl. Func. Mater. 2022. V. 2. P. 35. https://doi.org/10.35745/afm2022v02.02.0006
- D’yachkov P.N., Makaev D.V. // Phys. Rev. B. 2007. V. 76. P. 195411. https://doi.org/10.1103/PhysRevB.76.195411
- D’yachkov P.N., Makaev D.V. // Int. J. Quantum Chem. 2016. V. 116. P. 316. https://doi.org/10.1002/qua.25030
- D’yachkov P.N. // Quantum Chemistry of Nanotubes: Electronic Cylindrical Waves. London: Taylor and Francis, 2019. 212 p.
- Дьячков П.Н. // Углеродные нанотрубки: строение, свойства, применения. М.: БИНОМ. Лаборатория знаний, 2006. 203 с.
- Cohen-Karni T., Segev L., Srur-Lavi O. et al. // Nature Nanotechnol. 2006. V. 1. P. 36. https://doi.org/10.1038/nnano.2007.179
- Changa T. // Appl. Phys. Lett. 2007. V. 90. P. 201910. https://doi.org/10.1063/1.2739325
- Zhang D.-B., James R.D., Dumitrică T. // Phys. Rev. B. 2009. V. 80. P. 155418. https://doi.org/10.1103/PhysRevB.80.115418
- Bercioux D., Lucignano P. // Rep. Prog. Phys. 2015. V. 78. P. 106001. https://https://doi.org/10.1088/0034-4885/78/10/106001
- Koo H.C., Nitta J., Frolov S. M. et al. // Nat. Mater. 2015. V. 14. P. 871. https://doi.org/10.1038/nmat4360
- Koo H.C., Kim S.B., Kim H. et al. // Adv. Mater. 2020. V. 32. P. 2002117. https://doi.org/10.1002/adma.202002117
- Рашба E.И., Шека В.И. // Физ. тверд. тела. 1959. Т. 2. С. 162.
- D’yachkov P.N., D’yachkov E.P. // Appl. Phys. Lett. 2022. V. 120. P. 173101. https://doi.org/10.1063/5.0086902
- D’yachkov P.N. // Russ. J. Inorg. Chem. 2022. V. 67. P. 1606. https://doi.org/10.1134/S0036023622600678
- Martin W.C. Notional Bureau of Standards A. Phys. Chem. 1971. V. 7SA.
Дополнительные файлы
 
				
			 
						 
						 
						 
					 
						 
									

 
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail 




