Preparation and Reduction of Graphene Oxide/Zinc Borate Composites as Candidate Flame-Retardant Materials
- Autores: Ivannikova A.S.1,2, Ioni Y.V.1, Sapkov I.V.1,3, Kozlova L.O.4, Kozerozhets I.V.1
- 
							Afiliações: 
							- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
- Materials Science Department, Moscow State University
- Physics Department, Moscow State University
- 119991, Moscow, Russia
 
- Edição: Volume 68, Nº 6 (2023)
- Páginas: 857-864
- Seção: НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ И НАНОМАТЕРИАЛЫ
- URL: https://cardiosomatics.ru/0044-457X/article/view/665250
- DOI: https://doi.org/10.31857/S0044457X2360007X
- EDN: https://elibrary.ru/UGEFHG
- ID: 665250
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
A new method for manufacturing composites comprising graphene oxide (GO) and zinc borate nanopowders is described. The method comprises ultrasonic stirring of precursor slurries followed by removal of water. Exposure to supercritical isopropanol provides a composite comprising reduced graphene oxide (RGO) and zinc borate nanopowder due to removal of oxygen functions from the graphene oxide structure, thereby providing a uniform distribution of zinc borate particles over the surface of reduced graphene oxide.
Palavras-chave
Sobre autores
A. Ivannikova
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences; Materials Science Department, Moscow State University
														Email: irina135714@yandex.ru
				                					                																			                												                								119991, Moscow, Russia; 119991, Moscow, Russia						
Yu. Ioni
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
														Email: irina135714@yandex.ru
				                					                																			                												                								119991, Moscow, Russia						
I. Sapkov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences; Physics Department, Moscow State University
														Email: irina135714@yandex.ru
				                					                																			                												                								119991, Moscow, Russia; 119991, Moscow, Russia						
L. Kozlova
119991, Moscow, Russia
														Email: irina135714@yandex.ru
				                					                																			                												                								119991, Moscow, Russia						
I. Kozerozhets
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: irina135714@yandex.ru
				                					                																			                												                								119991, Moscow, Russia						
Bibliografia
- Wang H., Yin P. // Case. Stud. Constr. Mater. 2023. V. 18. P. e01748. https://doi.org/10.1016/j.cscm.2022.e01748
- Dong J., Li G., Gao J. et al. // Sci. Total. Environ. 2022. V. 848. P. 157695. https://doi.org/10.1016/j.scitotenv.2022.157695
- Ling S., Lu C., Fu M. et al. // J. Clean. Prod. 2022. V. 373. P. 133970. https://doi.org/10.1016/j.jclepro.2022.133970
- Chai K., Xu S. // Adv. Powder. Technol. 2022. V. 33. P. 103776. https://doi.org/10.1016/j.apt.2022.103776
- Pan J., Wu M., Chu H. et al. // Macromol. Mater. Eng. 2022. V. 307. P. 2200259. https://doi.org/10.1002/mame.202200259
- Zhang C., He H., Li Q. et al. // Polym. Int. V. 71. P. 1193. https://doi.org/10.1002/pi.6399
- Miao Z., Yan D., Wang X. et al. // Chin. Chem. Lett. 2021. V. 33. P. 4026. https://doi.org/10.1016/j.cclet.2021.12.003
- Ozyhar T., Tschannen C., Thoemen H. et al. // Fire. And. Materials. 2022. V. 46. P. 595. https://doi.org/10.1002/fam.3009
- Tong C., Zhang S., Zhong T. et al. // Chem. Eng. J. 2021. V. 413. P. 129440. https://doi.org/10.1016/j.cej.2021.129440
- Yang K., Li X. // Holzforschung. 2019. V. 73. P. 599. https://doi.org/10.1515/hf-2018-0167
- M. Zia-ul-Mustafa, Faiz A., Sami U. et al. // Prog. Org. Coat. 2017. V. 102. P. 201. https://doi.org/10.1016/j.porgcoat.2016.10.014
- Guo L., Lv Z., Zhu T. et al. // Sci. Total. Environ. 2023. V. 858. P. 159746. https://doi.org/10.1016/j.scitotenv.2022.159746
- Xu Z., Zhan J., Xu Z. et al. // Molecules. 2022. V. 27. P. 8783. https://doi.org/10.3390/molecules27248783
- Liu J., Zeng L., Ai L. et al. // Vinyl. Addit. Technol. 2022. V. 28. P. 591. https://doi.org/10.1002/vnl.21909
- Xu Y., Zhou R., Mu J. et al. // Colloids. Surf. A. Physicochem. Eng. Asp. 2022. V. 640. P. 128400. https://doi.org/10.1016/j.colsurfa.2022.128400
- Atay H.Y., Celik E. // Polym. Compos. 2016. V. 24. P. 419. https://doi.org/10.1177/096739111602400605
- Li Y., Hao Z., Cao H. et al. // Opt Laser Technol. 2023. V. 160. P. 109054. https://doi.org/10.1016/j.optlastec.2022.109054
- Tu M., Jia L., Kong X. et al. // J. Colloid. Interface. Sci. 2023. V. 635. P. 105. https://doi.org/10.1016/j.jcis.2022.12.126
- Sahoo S., Bhuyan M., Sahoo D. // J. Alloys Compd. 2023. V. 935. P. 168097. https://doi.org/10.1016/j.jallcom.2022.168097
- Ma Q., Liu M., Cui F. et al. // Carbon. 2023. V. 204. P. 336. https://doi.org/10.1016/j.carbon.2022.12.066
- Li J., Wu W., Duan R. et al. // Appl. Surf. Sci. 2023. V. 611. P. 155736. https://doi.org/10.1016/j.apsusc.2022.155736
- Chen O., Liu L., Zhang A. et al. // Chem. Eng. J. 2023. V. 454. P. 140424. https://doi.org/10.1016/j.cej.2022.140424
- Zheng H., Liu H., Duan H. // Mater. Lett. 2023. V. 330. P. 133351. https://doi.org/10.1016/j.matlet.2022.133351
- Yang F., Zhao H., Wang Y. et al. // Colloids. Surf. A Physicochem. Eng. Asp. 2022. V. 648. P. 129326. https://doi.org/10.1016/j.colsurfa.2022.129326
- Chua C.K., Pumera M. // Chem. Soc. Rev. 2014. V. 43. P. 291. https://doi.org/10.1039/C3CS60303B
- Agarwal V., Per B. Zetterlund. // Chem. Eng. J. 2021. V. 405. P. 127018. https://doi.org/10.1016/j.cej.2020.127018
- Koreshkova A.N., Gupta V., Peristyy A. et al. // Talanta. 2019. V. 205. P. 120081. https://doi.org/10.1016/j.talanta.2019.06.081
- Sang B., Li Zw., Li Xh. et al. // J. Mater. Sci. 2016. V. 51. P. 8271. https://doi.org/10.1007/s10853-016-0124-0
- Qian X., Song L., Yu B. et al. // J. Mater. Chem. A. 2013. V. 1. P. 6822. https://doi.org/10.1039/C3TA10416H
- Pishch I.V., Rotman T.I., Romanenko Z.A. et al. // Glass. Ceram. 1987. V. 44. P.174. https://doi.org/10.1007/BF00701660
- Rajpoot Y., Sharma V., Basak S. et al. // J. Nat. Fibers. 2022. V. 19. P. 5663. https://doi.org/10.1080/15440478.2021.1889431
- Liu Z., Li Z., Zhao X. et al. // Polymers. 2018. V. 10. P. 625. https://doi.org/10.3390/polym10060625
- Kozerozhets I.V., Avdeeva V.V., Buzanov G.A. et al. // Inorganics. 2022. V. 10. P. 212. https://doi.org/10.3390/inorganics10110212
- Zhang Z., Wu W., Zhang M. et al. // Appl. Surf. Sci. 2017. V. 425. P. 896. https://doi.org/10.1016/j.apsusc.2017.07.101
- Zuo L., Fan W., Zhang Y. et al. // Compos. Sci. Technol. 2017. V. 139. P. 57. https://doi.org/10.1016/j.compscitech.2016.12.008
- Leng Q., Li J., Wang Y. // New J. Chem. 2020. V. 44. P. 4568. https://doi.org/10.1039/C9NJ06253J
- Ioni Y.V., Chentsov S.I., Sapkov I.V. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 1711. https://doi.org/10.1134/S0036023622601076
- Yu P., Wang H., Bao R. et al. // ACS Sustain. Chem. Eng. 2017. V. 5. P. 1557. https://doi.org/10.1021/acssuschemeng.6b02254
- Eigler S., Dotzer C., Hof F. et al. // Chem. Eur. J. 2013. V. 19. P. 9490. https://doi.org/10.1002/chem.201300387
- Aliyev E., Filiz V., Khan M.M. et al. // Nanomaterials. 2019. V. 9. P. 1180. https://doi.org/10.3390/nano9081180
- Zheng Y., Qu Y., Tian Y. et al. // Colloids. Surf. A Physicochem. Eng. Asp. 2009. V. 349. P. 19. https://doi.org/10.1016/j.colsurfa.2009.07.039
- López-Díaz D., López Holgado M., García-Fierro J. et al. // J. Phys. Chem. 2017. V. 121. P. 20489. https://doi.org/10.1021/acs.jpcc.7b06236
- Perumbilavil S., Sankar P., T. Priya Rose T.P. et al. // Appl. Phys. Lett. 2015. V. 107. P. 051104. https://doi.org/10.1063/1.4928124
- Farah S., Farkas A., Madarász J. et al. // J. Therm. Anal. Calorim. 2020. V. 142. P. 331. https://doi.org/10.1007/s10973-020-09719-3
- Liu C., Wu W., Shi Y. et al. // Compos. B. Eng. 2020. V. 203. P. 108486. https://doi.org/10.1016/j.compositesb.2020.108486
- Ioni Y.V., Groshkova Y.A., Buslaeva E.Y. et al. // Russ. J. Inorg. Chem. 2021. V. 66. P. 950. https://doi.org/10.1134/S0036023621060115
- Tkachev S.V., Buslaeva E.Y., Naumkin A.V. et al. // J. Inorg. Mater. 2012. V. 48. P. 796. https://doi.org/10.1134/S0020168512080158
- Ioni Y.V., Kraevsky S.V., Groshkova Y.A. et al. // Mendeleev Commun. 2021. V. 35. P. 718. https://doi.org/10.1016/j.mencom.2021.09.042
- Ioni Y.V., Voronov V.V., Naumkin A.V. et al. // Russ. J. Inorg. Chem. 2015. V. 60. P. 709. https://doi.org/10.1134/S0036023615060066
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 





