Hydrothermal Synthesis and Photocatalytic Properties of Cobalt-Doped Tungsten Oxide
- Authors: Zakharova G.S.1, Podval’naya N.V.1, Gorbunova T.I.2, Pervova M.G.2
- 
							Affiliations: 
							- Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences
- Postovsky Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences
 
- Issue: Vol 68, No 4 (2023)
- Pages: 435-443
- Section: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://cardiosomatics.ru/0044-457X/article/view/665265
- DOI: https://doi.org/10.31857/S0044457X22602127
- EDN: https://elibrary.ru/FMYUIV
- ID: 665265
Cite item
Abstract
Hexagonal tungsten trioxide–base interstitial solid solutions of general formula CoxWO3, where 0.01 ≤ x ≤ 0.09, were prepared hydrothermally. The dopant homogeneity extent was found to depend on рН in the working solution. Interstitial solid solutions with the highest Co2+ concentrations were formed at рН of 2.3. The CoxWO3 samples with a fiber-like morphology with a fiber diameter of ca. 40 nm, which were prepared at рН of 2.3, had the highest specific surface area, equal to 38.6 m2/g. The key parameter for the stability of the CoxWO3 crystal structure appeared to be ammonium ions residing in the hexagonal channels of the crystal structure. When tested as photocatalysts of 1,2,4-trichlorobenzene oxidation under the UV light, the prepared samples showed high chloroarene conversions and low selectivities to yield a wide range of organic compounds, including chlorine-free ones.
Keywords
About the authors
G. S. Zakharova
Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences
														Email: volkov@ihim.uran.ru
				                					                																			                												                								620990, Yekaterinburg, Russia						
N. V. Podval’naya
Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences
														Email: volkov@ihim.uran.ru
				                					                																			                												                								620990, Yekaterinburg, Russia						
T. I. Gorbunova
Postovsky Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences
														Email: volkov@ihim.uran.ru
				                					                																			                												                								620108, Yekaterinburg, Russia						
M. G. Pervova
Postovsky Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences
							Author for correspondence.
							Email: volkov@ihim.uran.ru
				                					                																			                												                								620108, Yekaterinburg, Russia						
References
- Zheng H., Ou J.Z., Strano M.S. et al. // Adv. Funct. Mater. 2011. V. 21. № 12. P. 2175. https://doi.org/10.1002/adfm.201002477
- Huang Z.-F., Song J., Pan L. et al. // Adv. Mater. 2015. V. 27. № 36. P. 5309. https://doi.org/10.1002/adma.201501217
- Бушкова Т.М., Егорова А.А., Хорошилов А.В. и др. // Журн. неорган. химии. 2021. Т. 66. № 4. С. 470.
- Bently J., Desai S., Bastakoti B.P. // Chem. Eur. J. 2021. V. 27. № 36. P. 9241. https://doi.org/10.1002/chem.202100649
- Lei G., Lou C., Liu X. et al. // Sens. Actuators B. Chem. 2021. V. 341. № 15. P. 129996. https://doi.org/10.1016/j.snb.2021.129996
- Purushothaman K.K., Muralidharan G., Vijayakumar S. // Mater. Lett. 2021. V. 296. 129881. https://doi.org/10.1016/j.matlet.2021.129881
- Zheng F., Xi C., Xu J. et al. // J. Alloys Compd. 2019. V. 772. P. 933. https://doi.org/10.1016/j.jallcom.2018.09.085
- Филиппова А.Д., Румянцев А.А., Баранчиков А.Е. и др. // Журн. неорган. химии. 2022. Т. 67. № 6. С. 706.
- Murillo-Sierra J.C., Hernández-Ramírez A., Hinojosa-Reyes L. et al. // Chem. Eng. J. Adv. 2021. V. 5. 100070. https://doi.org/10.1016/j.ceja.2020.100070
- Dong P., Hou G., Xi X. et al. // Environ. Sci.: Nano. 2017. V. 4. № 3. P. 539. https://doi.org/10.1039/c6en00478d
- Dutta V., Sharma S., Raizada P. et al. // J. Environ. Chem. Eng. 2021. V. 9. № 1. 105018. https://doi.org/10.1016/j.jece.2020.105018
- Razali N.A.M., Salleh W.N.W., Aziz F. et al. // J. Clean. Prod. 2021. V. 309. 127438. https://doi.org/10.1016/j.jclepro.2021.127438
- Khaki M.R.D., Shafeeyan M.S., Raman A.A.A. et al. // J. Environ. Manag. 2017. V. 198. № 2. P. 78. https://doi.org/10.1016/j.jenvman.2017.04.099
- Jacob K.A., Peter P.M., Jose P.E. et al. // Mater. Today: Proc. 2022. V. 49. № 2. 1408. https://doi.org/10.1016/j.matpr.2021.07.104
- Song H., Li Y., Lou Z. et al. // Appl. Catal. B: Environ. 2015. V. 166–167. № 5. P. 112. https://doi.org/10.1016/j.apcatb.2014.11.020
- Solarska R., Alexander B.D., Braun A. et al. // Electrochim. Acta. 2010. V. 55. № 26. P. 7780. https://doi.org/10.1016/j.electacta.2009.12.016
- Shannow R.D. // Acta Crystallogr. A. 1976. V. 32. № 5. P. 751. https://doi.org/10.1107/S0567739476001551
- Mehmood F., Iqbal J., Jan T. et al. // Vib. Spectr. 2017. V. 93. P. 78. https://doi.org/10.1016/j.vibspec.2017.09.005
- Sun S., Chang X., Li Z. // Mater. Charact. 2012. V. 73. P. 130. https://doi.org/10.1016/j.matchar.2012.08.005
- Sivakarthik P., Thangaraj V., Parthibavarman M. // J. Mater. Sc.: Mater. Electron. 2017. V. 28. № 8. P. 5990. https://doi.org/10.1007/s10854-016-6274-7
- Liu Z., Liu B., Xie W. et al. // Sens. Actuators B Chem. 2016. V. 235. P. 614. https://doi.org/10.1016/j.snb.2016.05.140
- Shen K., Sheng K., Wang Z. et al. // Appl. Surf. Sci. 2020. V. 501. P. 144003. https://doi.org/10.1016/j.apsusc.2019.144003
- Lim J.-C., Jin C., Choi M.S. et al. // Ceram. Int. 2021. V. 47. № 15. P. 20956. https://doi.org/10.1016/j.ceramint.2021.04.095
- Hariharan V., Aroulmoji V., Prabakaran K. et al. // J. Alloys Compd. 2016. V. 689. P. 41. https://doi.org/10.1016/j.jallcom.2016.07.136
- Kumar R.D., Karuppuchamy S. // J. Alloys Compd. 2016. V. 674. P. 384. https://doi.org/10.1016/j.jallcom.2016.03.074
- Dalenjan F.A., Bagheri-Mohagheghi M.M., Shirpay A. // J. Solid State Electrochem. 2022. V. 22. № 2. P. 401. https://doi.org/10.1007/s10008-021-05076-9
- Jia Q., Ji H., Gao P. et al. // J. Mater. Sci.: Mater. Electron. 2015. V. 26. № 8. P. 5792. https://doi.org/10.1007/s10854-015-3138-5
- Sing K.S.W., Everett D.H., Haul R.A.W. et al. // Pure Appl. Chem. 1985. V. 57. № 4. P. 603. https://doi.org/10.1351/pac198557040603
- Moura J.V.B., Silveira J.V., da Silva Filho J.G. et al. // Vib. Spectrosc. 2018. V. 98. P. 98. https://doi.org/10.1016/j.vibspec.2018.07.008
- Szilágyi I.M., Wang L., Gouma P.-I. et al. // Mater. Res. Bull. 2009. V. 44. № 3. P. 505. https://doi.org/10.1016/j.materresbull.2008.08.003
- Szilágyi I.M., Madarász J., Pokol G. et al. // Chem. Mater. 2008. V. 20. № 12. P. 4116. https://doi.org/10.1021/cm800668x
- Mohamed M.M., Salama T.M., Hegazy M.A. et al. // Int. J. Hydrogen Energy. 2019. V. 44. № 10. P. 4724. https://doi.org/10.1016/j.ijhydene.2018.12.218
- ThOny A., Rossi M.J. // J. Photochem. Photobiol. A. 1997. V. 104. № 1–3. P. 25.
- van Wijk D., Cohet E., Gard A. et al. // Chemosphere. 2006. V. 62. № 8. P. 1294. https://doi.org/10.1016/j.chemosphere.2005.07.010
- Zolezzi M., Cattaneo C., Tarazona J.V. // Environ. Sci. Technol. 2005. V. 39. № 9. P. 2920. https://doi.org/10.1021/es049214x
- Horikoshi S., Minami D., Ito S. et al. // J. Photochem. Photobiol. A. 2011. V. 217. № 1. P. 141. https://doi.org/10.1016/j.jphotochem.2010.10.001
- Dong W.H., Zhang P., Lin X.Y. et al. // Sci. Total Environ. 2015. V. 505. P. 216. https://doi.org/10.1016/j.scitotenv.2014.10.002
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					





