Mixed Ligand Zinc Complexation with Ornithine and Histidine in Aqueous Solution
- Authors: Nikitina M.G.1, Gruzdev M.S.1, Pyreu D.F.2
- 
							Affiliations: 
							- Krestov Institute of Solution Chemistry, Russian Academy of Sciences
- Ivanovo State University
 
- Issue: Vol 68, No 3 (2023)
- Pages: 363-372
- Section: ФИЗИКОХИМИЯ РАСТВОРОВ
- URL: https://cardiosomatics.ru/0044-457X/article/view/665290
- DOI: https://doi.org/10.31857/S0044457X22700167
- EDN: https://elibrary.ru/JFWMYN
- ID: 665290
Cite item
Abstract
The formation of mixed-ligand complexes of various compositions in the Zn–L-histidine (His)–L-ornithine (Orn) system has been studied by pH-metry, calorimetry, and NMR spectroscopy. The thermodynamic parameters (log K, ΔrG0 ΔrH, ΔrS) of the reactions of their formation at 298.15 K and ionic strength I = 0.5 (KNO3) have been calculated. Based on the comparative analysis of thermodynamic parameters, the most probable method for the coordination of amino acid residues in mixed complexes has been proposed.
Keywords
About the authors
M. G. Nikitina
Krestov Institute of Solution Chemistry, Russian Academy of Sciences
														Email: pyreu@mail.ru
				                					                																			                												                								153025, Ivanovo, Russia						
M. S. Gruzdev
Krestov Institute of Solution Chemistry, Russian Academy of Sciences
														Email: pyreu@mail.ru
				                					                																			                												                								153025, Ivanovo, Russia						
D. F. Pyreu
Ivanovo State University
							Author for correspondence.
							Email: pyreu@mail.ru
				                					                																			                												                								153025, Ivanovo, Russia						
References
- Yamauchi O., Odani A. // J. Chem. Soc., Dalton Trans. 2002. P. 3411. https://doi.org/10.1039/B202385G
- Yamauchi O., Odani A. // Inorg. Chim. Acta. 1985. V. 100. P. 165. https://doi.org/10.1016/S0020-1693(00)88304-8
- Chaga G.S. // J. Biochem. Biophys. Methods. 2001. V. 49. P. 313.
- Gaberc-Porekar V., Menart V. // J. Biochem. Biophys. Methods. 2001. V. 49. P. 335.
- Yang P., Zheng W., Hua Z. // Inorg. Chem. 2000. V. 39. № 24. P. 5454. https://doi.org/10.1021/ic0000146
- Raman N., Sakthivel A., Raja J.D. et al. // Russ. J. Inorg. Chem. 2008. V. 53. P. 213. https://doi.org/10.1134/S0036023608020113
- Demidov V.N., Kas’yanenko N.A., Antonov V.S. et al. // Russ. J. Gen. Chem. 2012. V. 82. P. 602. https://doi.org/10.1134/S1070363212030401
- Nair M.S., Arasu P.T., Sutha S.G. et al. // J. Indian Chem. Soc. 1998. V. 37A. P. 1084. http://nopr.niscair.res.in/handle/123456789/40379
- Nair M.S., Pillai M.S., Ramalingam S.K. // J. Chem. Soc., Dalton Trans. 1986. P. 1. https://doi.org/10.1039/DT9860000001
- Никитина М.Г., Пырэу Д.Ф. // Журн. неорган. химии. 2021. Т. 66. № 10. С. 1482. https://doi.org/10.1134/S0036023621100120
- Бородин В.А., Васильев В.П., Козловский Е.В. Математические задачи химической термодинамики. Новосибирск: Наука, 1985. С. 219.
- Pettit L.D. // Pure Appl. Chem. 1984. V. 56. P. 247. https://doi.org/10.1351/pac198456020247
- Yamauchi O., Odani A. // Pure Appl. Chem. 1996. V. 68. P. 469. https://doi.org/10.1351/pac199668020469
- Farkas E., Gergely A., Kas E. // J. Inorg. Nucl. Chem. 1981. V. 43. P. 1591. https://doi.org/10.1016/0022-1902(81)80343-0
- Sovago I., Kiss T., Gergely A. // J. Chem. Soc., Dalton Trans. 1978. P. 964.
- Васильев В.П. Термодинамические свойства растворов электролитов. М.: Высш. школа, 1982. С. 201.
- Гаравин В.А. // Дис. … канд. хим. наук. Иваново: ИХТИ, 1983.
- Gergely A., Farkas E., Nagypál I. et al. // J. Inorg. Nucl. Chem. 1978. V. 40. P. 1709. https://doi.org/10.1016/0022-1902(78)80366-2
- Amico P., Arena G., Daniele P. et al. // Inorg. Chem. 1981. V. 20. P. 772. https://doi.org/10.1021/ic50217a027
- Pyreu D., Alekseeva E., Gridchin S. // Thermochim. Acta. 2019. V. 680. P. 178335. https://doi.org/10.1016/j.tca.2019.178335
- Couves L.D., Hague D.N., Moreton A.D. // J. Chem. Soc., Dalton Trans. 1992. P. 217. https://doi.org/10.1039/DT9920000217
- Kiss T., Sovago I., Gergely A. // Pure Appl. Chem. 1991. V. 63. P. 597.
- Sjoberg S. // Pure Appl. Chem. 1997. V. 69. P. 1549.
- Zhou L., Li S., Su Y. et al. // J. Phys. Chem. B. 2013. V. 117. P. 8954. https://doi.org/10.1021/jp4041937
- Dalosto S.D., Calvo R., Pizarro J.L., Arriortua M.I. // J. Phys. Chem. A. 2001. V. 105. P. 1074. https://doi.org/10.1021/jp003167n
- Ferrer P., Jiménez-Villacorta F., Rubio-Zuazo J. et al. // J. Phys. Chem. B. 2014. V. 118. P. 2842. https://doi.org/10.1021/jp411655e
- Kistenmacher T.J. // Acta Crystallogr., Sect. B. 1972. V. 28. P. 1302. https://doi.org/10.1107/S0567740872004133
- Kretsinger R.H., Cotton F.A., Bryan R.F. // Acta Crystallogr. 1963. V. 16. P. 651 https://doi.org/10.1107/S0365110X63001705
- Harding M.M., Cole S.J. // Acta Crystallogr. 1963. V. 16. P. 643. https://doi.org/10.1107/S0365110X63001699
- Bottari E., Festa M. // J. Coord. Chem. 1990. V. 22. P. 237. https://doi.org/10.1080/00958979009408220
- Powell K., Brown P., Byrne R. et al. // Pure Appl. Chem. 2013. V. 85. P. 2249.
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					





